分享:
分享到微信朋友圈
X
基础研究
基于7 T MRS利用量子滤波技术检测GABA序列设计及对比
董静 邱庆春 沈智威 章桃 聂婷婷 贾岩龙 吴仁华

董静,邱庆春,沈智威,等.基于7T MRS利用量子滤波技术检测GABA序列设计及对比.磁共振成像, 2015, 6(2): 141-144. DOI:10.3969/j.issn.1674-8034.2015.02.012.


[摘要] 目的 通过对7 T核磁共振仪序列进行修改和编译,实现量子滤波技术的应用,通过试管模型实验对可实现在体检测γ-氨基丁酸(Gamma-aminobutyric acid,GABA)的有效性进行分析比较,对后续活体动物及人体实验提供可靠依据。材料与方法 双量子滤波技术在7 T核磁共振扫描仪上应用于GABA的检测。在点分辨自旋回波序列基础上编辑新的双量子滤波序列,同时改变量子滤波射频脉冲的波形(Gauss脉冲和Sinc脉冲),比较不同波形对检测具有γ-氨基丁酸的溶液模型的有效性。结果 序列检测的有效性和非耦合抑制性效果数据通过分析处理得到,检测到的3.01ppm处的GABA信号和被抑制的重叠的代谢物信号是由选择性双量子滤波脉冲配合滤波梯度得以实现。结论 编译的双量子滤波序列可以获得在3.01ppm处的GABA信号,谱编辑分析得出其检测效率为30%~40%;通过谱编辑对结果的分析,不同波形的射频脉冲对GABA检测效果不同,可观察到Gauss波形射频脉冲检测的有效性,但两种波形脉冲对肌酸和胆碱抑制效果都较明显;双量子滤波序列改变TR(Repetition time)或TE(Echo time)时对GABA的检测效率有较大影响。
[Abstract] Objective: In this paper, the Double Quantum Filter (DQF) sequence and its functions and detection efficiency in measuring γ-aminobutyric acid (GABA) are studied, compared and developed in phantom experiments.The result can provide a basis for later human clinical.Materials and Methods: A point-resolved spectroscopy (PRESS)-localized double quantum filter (DQF) was applied to the detection of GABA at 7 T Magnetic resonance spectrum (MRS). At the same time, the detection efficiencies of different sequences were compared by changing the RF pulse waveform (Sinc and Gauss) of DQF in phantom experiments.Results: In phantom experiments, the optimal echo time, the editing efficiency and the degree of suppression of uncoupled resonances were examined after numerical analysis of the editing performance.Conclusions: Excellent GABA signal retention at 3.01 ppm and robust suppression of the signals of the overlapping metabolites was achieved due to Double Quantum Filter (DQF) sequence. The spectral editing efficiency was measured to be 30%-40%. The detection effect was different for using different RF pulse. It is noticed that the detection efficiency of Gauss RF pulse is reasonably high. The suppression effect of Cr was obvious. The Cho can be suppressed effectively, too. In our experiments, we found that different TR (Repetition time) or TE (Echo time) has different effects on the results of MRS detection efficiency in measuring γ-aminobutyric acid.
[关键词] GABA;双量子滤波;脉冲序列;MRS;谱编辑
[Keywords] GABA;DQF;Pulse sequences;MRS;Spectral editing

董静 汕头大学理学院,汕头 515063;汕头大学医学院第二附属医院放射科,汕头 515041

邱庆春* 汕头大学医学院,汕头 515041

沈智威 汕头大学理学院,汕头 515063

章桃 汕头大学医学院第二附属医院放射科,汕头 515041

聂婷婷 汕头大学医学院第二附属医院放射科,汕头 515041

贾岩龙 汕头大学医学院第二附属医院放射科,汕头 515041

吴仁华* 汕头大学医学院第二附属医院放射科,汕头 515041

通信作者:邱庆春,E-mail:qcqiu@stu.edu.cn; 吴仁华,E-mail:rhwu@stu.edu.cn


基金项目: 国家自然科学基金重点项目 编号:30930027
收稿日期:2014-06-11
接受日期:2015-01-13
中图分类号:R445.2; R-331 
文献标识码:A
DOI: 10.3969/j.issn.1674-8034.2015.02.012
董静,邱庆春,沈智威,等.基于7T MRS利用量子滤波技术检测GABA序列设计及对比.磁共振成像, 2015, 6(2): 141-144. DOI:10.3969/j.issn.1674-8034.2015.02.012.

1 引言

       γ-氨基丁酸(Gamma-aminobutyric acid ,GABA)对维持大脑的正常功能发挥着重要作用,GABA浓度的异常与许多精神疾病相关[1,2]。大脑中GABA含量的准确测定对研究大脑正常和疾病起重要作用。1H MRS是目前惟一能无创性观察活体组织代谢及生化变化的技术,已在神经系统的临床上广泛应用[3,4,5]。磁共振频谱(Magnetic resonance spectrum ,MRS)可以无创在体检测大脑GABA水平[6,7],然而由于GABA在大脑中含量较低(1mM/kg)且与大脑中其他代谢物如肌酸、胆碱以及大分子有重叠,因此检测比较复杂困难。为了消除这种重叠,很多谱编辑法应运而生。目前针对GABA的谱编辑法主要有:J调制差分技术、二维J分解或化学位移相关谱、多量子滤波技术、磁化传递方法等[8,9,10,11]。本研究的目的是利用双量子滤波技术检测GABA,并提高检测GABA信号的选择性。

2 方法

2.1 原理

       γ-氨基丁酸近似为A2M2X2自旋系统,A2、M2和X2自旋共振峰分别在3.01 ppm、1.89 ppm和2.28 ppm处,其中它们的J耦合强度为:J=JAM=JMX=7.3 Hz。γ-氨基丁酸(GABA)1H核相互耦合,构成自旋体系(六旋体)耦合的1H能产生双量子相干。肌酸及胆碱等中1H的不能产生量子相干效应,通过双量子相干效应达到抑制肌酸或胆碱的目的,使得在3.0 ppm化学位移处的GABA可被检测到。90°-τ-90°是双量子跃迁的基本脉冲序列,双量子滤波技术在多种生物组织中均可应用,点分辨自旋回波序列时序如(1)式,将双量子滤技术与此序列结合,从而实现GABA的在体检测。

2.2 脉冲序列比较

       将改进的射频脉冲添加在点分辨自旋回波序列中,双量子滤波脉冲时序(2)式:

       第一个90°脉冲和两个180°脉冲称为定位序列,括号内两个90°脉冲为双量子滤波脉冲。如图1A、B为简化的双量子-点分辨自旋回波脉冲序列图,为了表示清晰图中省略了抑水脉冲、体积外抑脂脉冲。本实验序列比较两种脉冲的检测效率,如图1两种基本脉冲序列,A为两个量子滤波脉冲都采用sinc选择性脉冲,B为图中的两个量子滤波脉冲采用Gauss选择性脉冲[12]

图1A、B  为添加了两个90°脉冲的双量子滤波脉冲序列。A中采用两个90°sinc脉冲为量子滤波脉冲;B中采用两个90°Gauss脉冲量子滤波脉冲。为了简单起见,最初的水抑制脉冲和体积外抑脂省略。增加的G1和G2梯度振幅分别为11.0 mT/m和22.0 mT/m,标记用黑色表示实现双量子相干选择
图2  示扫描结果(DQF序列均为Gauss脉冲)。A为常规PRESS定位序列扫描GABA与Cr混合溶液(TR/TE=3500/15 ms,NA=128);B为常规PRESS定位序列扫描GABA(TR/TE=3500/15 ms,NA=128);C为DQF-PRESS序列扫描Cr(TR/TE=4500/30ms,NA=128);D为DQF-PRESS序列扫描GABA与Cr混合溶液(TR/TE=4500/30 ms,NA=128);E为DQF-PRESS序列扫描GABA与Cr混合溶液(TR/TE=4500/90 ms,NA=128)
图3  示GABA 50mM与Cr 50mM、Cho61 60nM的混合溶液扫描结果。A为常规PRESS定位序列(TR/TE=3500/15 ms,NA=128);B为Gauss脉冲DQF-PRESS序列(TR/TE= 4500/30 ms,NA=128);C为Sinc脉冲DQF-PRESS序列(TR/TE=4500/90 ms,NA=128)
Fig. 1A、B  Sketched diagram of double quantum filter sequence with two frequencies selective 90°Gaussian pulses. A: two frequencies selective 90°Sinc pulses; B: two frequencies selective 90°Gaussian pulses. For simplicity, the initial CHESS water suppression pulses and spatial pre-saturation (outer volume suppression, OVS) are not shown. The duration of G1 and G2 are both 1.0 ms. the amplitudes for G1 and G2 are 11.0 mT/m and 22.0 mT/m, respectively. The gradients marked black are used to select the double quantum coherence.
Fig. 2  Spectra from spherical phantoms for detection of GABA . A: acquiring from the phantom containing the mixture of Cr, GABA using convention PRESS location sequence; B: acquiring from the phantom containing GABA using convention PRESS-location sequence; C: acquiring from the phantom containing Cr using convention DQF-PRESS sequence (TR/TE=4500/30 ms,NA=128; D: acquiring from the phantom containing Cr, GABA using the DQF-PRESS sequence (TR/TE=4500/30 ms,NA=128; E: acquiring from the phantom containing Cr, GABA using the DQF-PRESS sequence (TR/TE=4500/90 ms,NA=128).
Fig. 3  Spectrums from spherical phantom containing a mixture of GABA, Cho and Cr. A: acquiring with convention PRESS location; B: acquiring with the DQF-PRESS sequence using Gauss RF pulse (TR/TE=4500/30 ms,NA=128); C: acquiring with the DQF-PRESS sequence using Sinc RF pulse (TR/TE=4500/90 ms ,NA=256)

2.3 实验

       所有实验是在7Tesla Agilent核磁共振扫描仪上采用体线圈扫描,比较两种量子滤波脉冲序列的检测效率,通过对3种试管溶液扫描:50mM GABA+ 50mM Cr、50mM GABA+ 50mM Cr+ 61mM Cho、50mM GABA+61mM Cho,利用不同的序列扫描。磁共振频谱的获得所选体素大小为(2.7 mm×2.7 mm×2.7 mm),同时比较不同参数对数据结果的影响分别取不同TR、TE和NA,观察波谱图像结果的差别分析其原因,其余参数设定为Bandwidth=2500 Hz、Power=(43, 43)。

3 讨论

       所有光谱都经过LCModel处理[13]图2图3显示了双量子滤波脉冲序列与传统的点分辨自旋回波序列的比较。通过扫描50mM GABA+ 50mM Cr、50mM GABA、50mM Cr、50mM GABA+ 50mM Cr+ 61mM Cho的混合液可以观察DQF技术的抑制效果及在3.0 ppm附近的共振峰的检测效率。

       利用DQF-PRESS序列扫描,图2图3的结果显示出一个较明显的GABA信号,通过数据分析和对比的结果是新序列有效的有力证据。谱编辑效率为30%~40%,此实验证明了谱编辑的有效性。

       结果显示,改进的双量子滤波序列在7T上的检测效率较其他谱编辑及2D光谱效率高。调整量子滤波射频脉冲的形状,可以发现对于GABA的检测效率不同的特点。图2可看出运用量子滤波技术编译的DQF-PRESS序列扫描肌酸与GABA的混合溶液时,Gauss脉冲当改变TR或TE均可以达到抑制肌酸并检测出3.0处的GABA共振峰的目的。然而经过多次扫描和处理发现用Sinc脉冲扫描的结果相对较差(图示未给出)。图3两种不同的脉冲波形扫描GABA与肌酸(Cr)、胆碱(Cho)的混合溶液时,高信号肌酸和胆碱被抑制下去,Gauss脉冲得到的GABA信号相对较强,且两种波形脉冲的序列都需要较长的TE扫描得到GABA的共振峰。通过比较各个图示数据结果,分析量子滤波技术在体检测GABA对肌酸的抑制效果较好,随着代谢物种类的增多对于GABA的在体检测有一定的影响。

4 结论

       前额叶皮层功能和结构的改变与许多精神类疾病有关,利用MRS测量这一区域的GABA含量较为困难,主要源于GABA信号强度小且受其它代谢物的影响[14]。利用两种编译的双量子点分辨自旋回波序列在7 T核磁共振仪上进行了在体检测GABA水平。实验首先通过扫描验证两种序列的有效性,然后比较不同选择性脉冲在双量子滤波技术中的检测的效率。结果发现:双量子滤波脉冲可以有效的抑制一些与GABA重叠的代谢物的信号,从而为GABAB的在体检测提供可能。此外,结果还显示在7 T核磁共振仪上选用不同脉冲波形其序列的有效性不同,且与TR、TE的参数设定有较大关系。因此,最佳设定TR、TE的参数将会提高序列的有效性。

[1]
CzuczwarS.J., PatsalosP.N.. The new generation of GABA enhancers: potential inthe treatment of epilepsy. CNS Drugs, 2001, 15(5): 339-350.
[2]
GoddardA.W., MasonG.F., AppelM., et al. Impaired GABA Neuronal Response to Acute Benzodiazepine Administration in Panic Disorder. Am J Psychiatry, 2004, 161(12): 2186-2193.
[3]
Jayakumar PN, Gangadhar BN, Venkatasubramanian GV, et al. High energy phosphate abnormalities normalize after antipsychotic treatment in Schizophrenia: a longitudinal 31P MRS study of basal ganglia. Psychiatry Res, 2002, 181(3): 237-240.
[4]
Peng J, Lou TY, lv FJ, et al. Elevated Lip signals on 1H-MR spectroscopy in differential diagnosis of intracranial lesions. Chin J Magn Reson Imaging, 2011, 2(1): 50-54.
彭娟,罗天友,吕发金,等.质子MRS脂质峰升高在颅内疾病鉴别诊断的价值.磁共振成像, 2011, 2(1): 50-54.
[5]
Marsman A, van den Heuvel MP, Klomp DW, et al. Glutamate in schizophrenia: a focused review and meta-analysis of 1H-MRS studies. Schizophren bull, 2013, 39(1): 120-129.
[6]
ErranteL.D., WilliamsonA., SpencerD.D., et al. Gabapentin and vigabatrin increase GABA in the human neocortical slice. Epilepsy Res, 2002, 49(3): 203-210.
[7]
HanstockC.C., CouplandN.J., AllenP.S.. GABA X2 multiplet measured Pre-and post-administration of vigabatrin in human brain. Magn Reson Med, 2002, 48(4): 617-623.
[8]
Hetherington HP, Newcomer BR, Pan JW. Measurement of human cerebral GABA at 4.1 T using numerically optimized editing pulses. Magn Reson Med, 1998, 39(1): 6-10.
[9]
Thomas MA, Yue K, Binesh N, et al. Localized two-dimensional shift correlated MR spectroscopy of human brain. Magn Reson Med, 2001, 46(1): 58-68.
[10]
Choi IY, Lee SP, Shen J. Selective Homonuclear Hartmann-Hahn Transfer Method for In Vivo Spectral Editing in the Human Brain. Magnetic Resonance in Medicine, 2005, 53(3): 503-510.
[11]
Shen J, Yang J, Choi IY, et al. Application to GABA editing using selective homonuclear polarization transfer spectroscopy. Journal of Magnetic Resonance, 2004, 170(2): 290-298.
[12]
Zhao TJ, Heberlein K, Jonas C, et al. New Double Quantum Coherence Filter for Localized Detection of Glutathione in Vivo. Mag Reson Med, 2006, 55(3): 676-680.
[13]
Guo XQ, Xiao YY, Shen ZW. Comparison of three different post-processing techniques on the absolute quantitation of 1H MR spectroscopy. Chin J Magn Reson Imaging, 2010, 1(2): 126-129.
郭秀琴,肖叶玉,沈智威.磁共振频谱数据定量后处理比较.磁共振成像, 2010, 1(2): 126-129.
[14]
Changho C, Coupland N.J, Hanstock C.C, et al. Brain γ-Aminobutyric Acid Measurement by Proton Double-Quantum Filtering with Selective J Rewinding. Magn Reson Med, 2005, 54(2): 272-279.

上一篇 磁共振灌注加权成像定量参数在前列腺外周带前列腺癌鉴别诊断中的价值
下一篇 磁共振新技术DKI和IVIM在中枢神经系统的研究现状
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2