分享:
分享到微信朋友圈
X
临床研究
1H-MRS检测早期帕金森病纹状体、黑质的功能代谢
方学文 胡涛 武玉华 黎见明 张安 胡炎兴 周国华 沈君

方学文,胡涛,武玉华,等. 1H-MRS检测早期帕金森病纹状体、黑质的功能代谢.磁共振成像, 2015, 6(7): 481-485. DOI:10.3969/j.issn.1674-8034.2015.07.001.


[摘要] 目的 探讨1H-MRS检测早期帕金森病(PD)患者纹状体和黑质代谢变化的可能性。材料与方法 44例经临床确诊的双侧肢体症状不伴痴呆的早期PD患者纳入研究,32名年龄、性别等相匹配的健康志愿者作为对照组,两组均进行纹状体单体素1H-MRS及黑质多体素1H-MRS检查。PD患者33例获得纹状体MRS谱线,32例获得黑质MRS谱线;志愿者31名获得双侧纹状体MRS谱线,28名获得双侧黑质谱线。测量豆状核、黑质区域NAA、Cho、Cr及各参数比值,并进行比较分析。结果 PD组及对照组左右侧纹状体、黑质NAA、Cho、Cr各参数比值的差异均无统计学意义(P值均>0.05)。PD组纹状体NAA/Cr较对照组降低(P<0.05),其余各参数比值与对照组无明显差异(P>0.05);黑质各参数值两组间的差异无统计学意义(P值均>0.05)。结论 1H-MRS能检测双侧症状不伴痴呆的早期PD患者纹状体代谢异常,有助于早期PD的诊断。
[Abstract] Objective: To investigate whether 1H-MRS can be used to demonstrate the metabolic changes in striatum and substantia nigra for early Parkinson’s disease (PD).Materials and Methods: Totally, 44 patients with early Parkinson’s disease having bilateral symptoms but without dementia were enrolled. Thirty-two age and sex-matched volunteers were included as normal controls. 1H-MRS using singlevoxel PRESS for the striatum and multiple-voxel PRESS for the substantia nigra were performed. MRS data were successfully obtained from the striatum in 33 patients and the substantia nigra in 32 patients, and respectively from 31 and 28 volunteers. The metabolite contents, including N-acetylaspartete (NAA), Choline (Cho), Creatinine (Cr) and their relative ratios were analyzed and compared.Results: No significant differences were found for each ratio of metabolite contents between right and left in striatum and substantia nigra either in the patients or in the controls (P>0.05). The NAA/Cr ratio of the striatum was lower in the PD patients than that in controls (P<0.05), but no significant differences were found in other ratios (P>0.05). In the substantia nigra, there were no significant differences for all metabolite content ratios between the two groups (P>0.05).Conclusions: 1H-MRS can be used to detect the metabolic abnormality in striatum for early PD with bilateral symptoms without dementia, which is helpful for the early diagnosis of PD.
[关键词] 帕金森病;磁共振波谱学;黑质;纹状体
[Keywords] Parkinson disease;Magnetic resonance spectroscopy;Substantia nigra;Corpus striatum

方学文 广东省东莞市人民医院放射科,东莞 523018

胡涛 广东省东莞市人民医院放射科,东莞 523018

武玉华 广东省东莞市人民医院内分泌科,东莞 523018

黎见明 广东省东莞市人民医院放射科,东莞 523018

张安 广东省东莞市人民医院放射科,东莞 523018

胡炎兴 广东省东莞市人民医院放射科,东莞 523018

周国华 广东省东莞市人民医院放射科,东莞 523018

沈君* 中山大学孙逸仙纪念医院放射科,广州 510120

通讯作者:沈君,E-mail:shenjun@mail.sysu.edu.cn


基金项目: 广东省科技厅基金项目 编号:2012B031800002
收稿日期:2015-01-30
接受日期:2015-03-26
中图分类号:R445.2; R332.81 
文献标识码:A
DOI: 10.3969/j.issn.1674-8034.2015.07.001
方学文,胡涛,武玉华,等. 1H-MRS检测早期帕金森病纹状体、黑质的功能代谢.磁共振成像, 2015, 6(7): 481-485. DOI:10.3969/j.issn.1674-8034.2015.07.001.

       随着我国人口的老龄化,神经退行性疾病、帕金森病(PD)发病率越来越高,其早期诊断对于及时进行治疗延缓病情至关重要。黑质和纹状体是帕金森病最早及主要累及的部位,1H-MRS是一种检测活体器官代谢和生化改变的无创性技术,已广泛应用于诊断神经系统疾病[1]1H-MRS可以提供黑质和纹状体细胞功能和生化代谢等多种信息。

       近年来也有应用31P-MRS进行PD脑代谢功能的研究[2,3],但31P-MRS临床上尚未普及。本研究应用1H-MRS检测早期PD病患者黑质和纹状体的生化代谢改变,探讨其对早期诊断PD病的价值。

1 材料与方法

1.1 一般资料

       2012年2月至2014年4月间于我院住院的早期帕金森病患者(Hoehn-Yahr分级均为Ⅱ级、双侧肢体症状,不伴痴呆) 44例,其中男19例,女25例,年龄43~ 84岁,平均(66.9±9.5)岁,病程1个月至10年,平均(34.9±33.1)个月,均符合2006年中华医学会神经病学分会运动障碍及帕金森病学组的诊断标准[4],存在运动减少及至少以下特征之一:肌肉强直、静止性震颤或姿势不稳(非原发性视觉、前庭、小脑、本体感受功能障碍造成;且本组病例均于住院期间及出院后经左旋多巴胺治疗有效;排除标准:有明确的脑卒中、脑外伤、脑炎史;发病前曾经应用抗精神药物、多巴胺耗竭药或明确的神经毒素接触史,同时用简易精神状态量表(MMSE)排除痴呆,其中33例获得纹状体MRS谱线,32例获得黑质MRS谱线。对照组:年龄、性别等相匹配的志愿者32名,男14名,女18名,年龄51~ 83岁,平均(63.9± 8.6)岁;其中31名获得双侧纹状体MRS谱线,28名获得双侧黑质谱线。3例患者纹状体及4名对照组志愿者黑质因头动干扰,波谱基线紊乱,波峰欠清晰,被剔除。所有病例及志愿者均知情同意下完成该项检查并且签署知情同意书。

1.2 1H-MRS

       采用Philips Intera Gyroscan 1.5 T超导型MR仪,标准正交头颅线圈。先行常规MR扫描,轴面:T2WI TSE TR 4000 ms,TE 110 ms;T1WI SE TR 500 ms,TE 15 ms。冠状面:FLAIR TR 6000 ms,TE 120 ms。层厚均为5 mm,层距0.5 mm,FOV 230 mm × 230 mm,矩阵256 × 256。1H-MRS检查以T2WI轴面图像定位,采用多体素PRESS序列扫描黑质,TR 2000 ms,TE 144 ms,FOV 50 mm × 50 mm,矩阵10 mm × 10 mm × 12 mm,重建矩阵5 mm × 5 mm × 12 mm ,Flip角90°,NSA 8,扫描时间384 s;采用单体素PRESS序列扫描纹状体,FOV 30 mm × 15 mm × 10 mm,TR 2000 ms,TE 144 ms,Flip角90° ,NSA 96,单侧扫描时间228 s;仪器自动完成体素内匀场和水抑制,获得谱线后进行基线校正和相位校正[5]

1.3 MRS分析

       采用Philips Viewform 10.0工作站处理数据,自动计算N-乙酰天冬氨酸(N-acetylaspartate,NAA)、胆碱(choline,Cho)、肌酸(creatinine,Cr)的浓度及NAA/Cr、Cho/Cr、NAA/Cho、NAA/(Cho +Cr)[5]图1图2)。

图1  A:黑质1H-MRS采用多体素PRESS序列;B:1H-MRS测量时ROI放置于黑质
图2  A:纹状体1H-MRS采用单体素PRESS序列;B:1H-MRS测量时ROI放置于纹状体
Fig.1  A,B: 1H-MRS of the substantia nigra is obtained using multiple-voxel PRESS and region of interest is placed on the area of the substantia nigra.
Fig. 2  A, B: 1H-MRS of the striatum is obtained using single-voxel PRESS and region of interest was placed on the area of the striatum.

1.4 统计学分析

       采用SAS 8.1统计软件进行分析。计量资料以±s表示。采用配对样本t检验分别比较PD组、对照组左右两侧黑质和纹状体差异,采用独立样本t检验分别比较PD组同对照组黑质、纹状体1H-MRS各参数比值差异。P<0.05为差异有统计学意义。

2 结果

2.1 早期PD与对照组左右两侧纹状体、黑质MRS各参数比值

       早期PD与对照组左右两侧纹状体、黑质MRS各参数比值见表1,PD组、对照组双侧纹状体及黑质MRS各参数比值差异均无统计学意义(P均> 0.05)。

表1  早期PD组与对照组纹状体、黑质MRS各参数比值左右两侧比较
Tab. 1  Comparison of MRS parameter ratios between the left and right sides in striatum and substantia nigra in early PD and control groups

2.2 早期PD与对照组纹状体、黑质MRS各参数比值比较

       分别将左右两侧对早期PD与对照组间的纹状体、黑质MRS各参数比值进行比较,结果见表2表3,PD组纹状体NAA/Cr较对照组降低(P<0.05),其余各参数比值在两组间差异无统计学意义(P>0.05);黑质各参数比值在两组间的差异无明显统计学意义(P值均>0.05)。

表2  早期PD组与对照组纹状体MRS各参数比值比较
Tab. 2  Comparison of MRS parameter ratios of the striatum between early PD and control groups
表3  早期PD组与对照组黑质MRS各参数比值比较
Tab. 3  Comparison of MRS parameter ratio of the substantia nigra between early PD and control groups

3 讨论

       1H-MRS可非侵入性检测脑组织的多种代谢物质的磁共振信号,从而评价人体组织器官生化代谢和病理的改变[6,7,8]。目前神经系统疾病1H-MRS主要检测NAA、Cr、Cho等多种代谢物:NAA是反映存活神经元的标记物;Cho是细胞膜磷酯代谢的一个组成成分,参与构成细胞膜,反映细胞膜的更新情况;Cr为能量代谢产物,是高能磷酸化的储备以及ATP和ADP的缓冲剂,脑内Cr浓度相对恒定,临床上常将Cr浓度作为内参照物[9,10,11,12]。临床工作中绝对定量法受较多因素的影响,相对定量所获得结果更具可信性,多数研究通过各参数比值间接反映脑组织,尤其是黑质和纹状体内神经元及神经胶质细胞的数量及功能状态[5, 13,14,15]

       既往较多学者利用MRS对PD进行了研究。Zheng等[16]应用MRS对一组PD动物模型研究发现,纹状体NAA/Cr出现有统计学意义的下降,其他比值改变无统计学意义。Abe等[17]用MRS研究一组具有震颤麻痹症状的患者时发现:同正常对照比较,PD组壳核NAA/Cr显著降低。O’Neill等[18]发现黑质Cr较正常对照组显著下降。Zhou等[19]研究PD黑质代谢时发现,患者组同对照组间、患肢同侧与对侧之间黑质的各参数比值差异有统计学意义。Lucetti等[20]发现基底节区NAA/Cr、NAA/Cho较正常对照组并没有显著变化,且认为,因为基底节区存在顺磁性物质,影响了MRS对基底节的代谢评价。Tedeschi等[21]发现,PD患者NAA/Cr、NAA/Cho同对照组在尾状核、豆状核等区域无显著差异。Weiduschat等[3]研究显示无论是1H-MRS还是31P-MRS都不能检测出早期PD的代谢异常改变。这些研究结果不一致,甚至相互矛盾,原因可能同不同厂家的仪器及仪器场强、样本量、患者严重程度、感兴趣区的顺磁性物质所致磁场不均、测量误差等多因素有关。

       本研究结果显示,左右两侧纹状体、黑质各参数比值在PD组、对照组均无统计学差异。PD组左右两侧各代谢参数比值无差异,可能和本组入选病例均为Hoehn-Yahr Ⅱ级,具有双侧肢体症状,以及黑质、纹状体双侧病变程度相仿,差异不大,或是早期病理改变轻微尚不能被MRS所检测出来有关。分别左右两侧对对照组及PD组间数据进行统计观察发现:PD组纹状体NAA/Cr较对照组降低,其余各参数比值在两组间差异无统计学意义;黑质各参数比值在两组间的差异无明显统计学意义。纹状体NAA/Cr的降低提示在早期PD患者纹状体已经出现神经元丢失或功能受损;其余比值差异无统计学意义,可能提示PD早期阶段以神经元丢失或功能受损为主,其他改变,如胶质增生尚不明显;而黑质区域各比值差异无统计学意义,可能和黑质体积较小、铁质等顺磁性物质沉积影响代谢物检测有关,当然样本量不够大、多体素MRS小体积取样也会影响结果的准确性和可信性。如果能在高场强,如3.0 T以上的磁共振下、大样本量、精确定位黑质(如网状部、致密部)、纹状体(如尾状核头、苍白球、壳核等精细部位)行MRS检测各代谢物浓度、比值,既用绝对定量法、又用相对定量法,可能会提高结果的准确性和可信性。

       总之,本研究采用1H-MRS对早期PD患者进行检测,发现早期PD患者纹状体NAA/Cr降低,提示MRS能检测出早期PD患者纹状体的细胞功能和生化代谢改变,MRS可作为一种可行的影像学检查手段,有助于PD的早期诊断。

[1]
Hu T, Fang XW, Zheng XL. Study on idiopathic Parkinson's disease with 1H-MRS and DTI. Int J Med Radiol, 2011, 34(2): 130-134.
胡涛,方学文,郑晓林.原发性帕金森病的1H-MRS和DTI研究.国际医学放射学杂志, 2011, 34(2): 130-134.
[2]
Weiduschat N, Mao X, Beal MF, et al. Sex differences in cerebral energy metabolism in Parkinson's disease: a phosphorus magnetic resonance spectroscopic imaging study. Parkinsonism Relat Disord, 2014, 20(5): 545-548.
[3]
Weiduschat N, Mao X, Beal MF, et al. Usefulness of proton and phosphorus MR spectroscopic imaging for early diagnosis of Parkinson's disease. J Neuroimaging, 2015, 25(1): 105-110.
[4]
Movement Disorders and Parkinson's Disease Study Group. Neurology branch of chinese medical association, the diagnosis of Parkinson's disease. Chin J Neurol, 2006, 39(6): 408-409.
中华医学会神经病学分会运动障碍及帕金森病学组.帕金森病的诊断.中华神经科杂志, 2006, 39(6): 408-409.
[5]
Hu T, Fag XW, Zheng XL, et al. Metabolic changes of striatum and substantia nigra in patients with early Parkinson’s disease demonstrated by 1H-MRS. Chin J Interv Imaging, 2014, 11(8): 511-514.
胡涛,方学文,郑晓林,等. 1H-MRS检测正常中老年人纹状体和黑质代谢功能.中国介入影像与治疗学, 2014, 11(8): 511-514.
[6]
Cudalbu C, Beuf O, Cavassila S. In vivo short echo time localized 1H-MRS of the rat brain at 7 T: influence of two strategies of background-accommodation on the metabolite concentration estimation using QUEST. J Signal Processing Systems, 2009, 55(1-3): 25-34.
[7]
Rommel D, Bol A, Abarca-Quinones J, et al. Rodent rhabdomyosarcoma: comparison between total choline concentration at 1H-MRS and 18F-fluoromethylcholine uptake at pet using accurate methods for collecting data. Mol Imaging Biol, 2010, 12(4): 415-423.
[8]
MeKenzie EJ, Jackson M, Sun J, et al. Monitoring the development of hepatocellular carcinoma in woodchucks using 31P-MRS. MAGMA, 2005, 18(4): 201-205.
[9]
Podell M, Hadjiconstantinou M, Smith MA, et al. Proton magnetic resonance imaging and spectroscopy identify metabolic changes in the striatum in the MPTP feline model of parkinsonism. Exp Neurol, 2003, 179(2): 159-166.
[10]
Clarke CE, Lowry M. Systematic review of proton magnetic resonance spectroscopy of the striatum in parkinsonian syndromes. Eur J Neurol, 2001, 8(6): 573-577.
[11]
Martin WR. Magnetic resonance imaging and spectroscopy in Parkinson's disease. Adv Neurol, 2001, 86: 197-203.
[12]
Wang B, Dai MF. Research progress of magnetic resonance imaging in Parkinson's disease. Chin J Magn Reson Imaging, 2013, (6): 459-462.
王波,戴敏方.帕金森病的MRI研究进展.磁共振成像, 2013, 4(6): 459-462.
[13]
Gröger A, Bender B, Wurster I, et al. Differentiation between idiopathic and atypical parkinsonian syndromes using three-dimensional magnetic resonance spectroscopic imaging. J Neurol Neurosurg Psychiatry, 2013, 84(6): 644-649.
[14]
Pagonabarraga J, Gómez-Ansón B, Rotger R, et al. Spectroscopic changes associated with mild cognitive impairment and dementia in Parkinson’s disease. Dement Geriatr Cogn Disord, 2012, 34(5-6): 312-318.
[15]
Metarugcheep P, Hanchaiphiboolkul S, Viriyavejakul A, et al. The usage of proton magnetic resonance spectroscopy in Parkinson's disease. J Med Assoc Thai, 2012, 95(7): 949-952.
[16]
Zheng Z, Fu W, Wang J, et al. Biochemical changes in striatum of Parkinson's disease rat model observed by modified proton magnetic resonance spectroscopy. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, 2010, 27(3): 524-528.
[17]
Abe K, Terakawa H, Takanashi M, et al. Proton magnetic resonance spectroscopy of patients with parkinsonism. Brain Res Bull, 2000, 52(6): 589-595.
[18]
O'Neill J, Schuff N, Marks WJ Jr, et al. Quantitative 1H magnetic resonance spectroscopy and MRI of Parkinson's disease. Mov Disord, 2002, 17(5): 917-927.
[19]
Zhou B, Yuan F, He Z, et al. Application of proton magnetic resonance spectroscopy on substantia nigra metabolites in Parkinson's disease. Brain Imaging Behav, 2014, 8(1): 97-101.
[20]
Lucetti C, Del Dotto P, Gambaccini G, et al. Proton magnetic resonance spectroscopy (1H-MRS) of motor cortex and basal ganglia in de novo Parkinson's disease patients. Neurol Sci, 2001, 22(1): 69-70.
[21]
Tedeschi G, Litvan I, Bonavita S, et al. Proton magnetic resonance spectroscopic imaging in progressive supranuclear palsy, Parkinson's disease and corticobasal degeneration. Brain, 1997, 120(Pt 9): 1541-1552.

上一篇 脑部血管周围间隙扩大及其相关疾病研究进展
下一篇 扩散张量成像和动脉自旋标记对急性缺血性脑卒中脑损伤的评价
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2