分享:
分享到微信朋友圈
X
临床研究
Sturge-Weber综合征癫痫发作与脑血流动力学的相关性研究
郑程程 蔡兆诚 冯洁 牛田力 苗延巍

郑程程,蔡兆诚,冯洁,等. Sturge-Weber综合征癫痫发作与脑血流动力学的相关性研究.磁共振成像, 2013, 4(2): 93-98. DOI:10.3969/j.issn.1674-8034.2013.02.003.


[摘要] 目的 应用动态磁敏感增强MR灌注成像(DSC-PI)技术对Sturge-Weber综合征(SWS)受累白质区的血流灌注进行定量测量,并和各种癫痫状态指标进行相关性分析,以期合理的解释SWS血流动力学与癫痫状态的关系。材料与方法 14例临床确诊为SWS的患儿进行MRI检查,其中男6例,女8例,平均年龄4.0岁(0.8~10.0岁)。所有患儿的病变部位均为单侧大脑半球。MR扫描序列包括:矢状面及轴面T1WI、轴面FSE T2WI、DSC-PI及增强后轴面T1WI。观察所有图像以确认脑内病变位置及范围;利用SPIN(signal process in neuroimage)软件分别测量病变白质区域及相应对侧位置的脑血流量(CBF)、脑血容量(CBV)和平均通过时间(MTT),并计算出灌注比值(CBFr、CBVr及MTTr)。根据CBFr值将患儿分为高灌注组(HP)及低灌注组(LP)。记录每例患儿的临床资料,尤其有无癫痫发作以及反映发作的各项参数:首次癫痫发作年龄、癫痫发作频率(SSF)及癫痫持续时间。对高、低灌注组病变侧与对侧的CBF、CBV及MTT值进行配对秩和检验;对癫痫状态的各临床参数与各项灌注参数进行Spearman相关分析。结果 14例SWS患者中,9例受累白质区CBF及CBV较对侧明显减低(CBFr值为-0.37±0.24, CBVr=-0.22±0.25,P值均<0.01),为LP组;5例脑内病变侧白质区CBF及CBV较对侧显著增高(CBFr值为0.31±0.05, CBVr值为0.40±0.17,P值均<0.01),为HP组。LP组年龄及癫痫发作频率得分(SSF)较HP组有增大趋势(年龄=63.80月,48.83月;SSF=2.50,1.33),但这差异缺乏统计学意义(P值分别为0.36、0.12)。病变侧CBFr值和CBV值与癫痫持续时间呈明显负相关(CBFr:r=-0.58;CBV:r=-0.55,P值均<0.05)。CBFr和CBVr与癫痫发作频率呈负相关,即癫痫发作越频繁,CBFr和CBVr越低(CBFr:r=-0.56;CBVr:r=-0.63,P值均<0.05)。结论 SWS受累白质区域的血流灌注并非持续降低,而存在相对高灌注状态;灌注异常与癫痫发作的频率和癫痫持续时间有关。
[Abstract] Objective: To evaluate the perfusion status of involved white matter in Sturge-Weber syndrome (SWS) using dynamical susceptibility contrasted perfusion imaging (DSC-PI), and then to compare the perfusion data and seizure variables, including age of first seizure, seizure frequency (score of seizure frequency, SSF) and duration of epilepsy, for reasonable explaining the hemodynamics and seizure variables in SWS.Materials and Methods: 14 patients (8 girls and 6 boys; age range, 0.8-10.0 years; median age, 4.0 years) with Sturge-Weber syndrome were recruited and performed MRI examination. All patients with unilateral lesions were located in one side of the cerebral hemispheres. MR protocols included axial and sagittal T1-weighted, axial fast spin-echo (FSE) T2-weighted, DSC-PI and contrasted T1-weighted. All raw data of DSC-PI were processed through the SPIN software (signal process in neuroimage). After determining the location and realm of SWS lesions, the CBF, CBV and MTT value of the affected and contralateral white matter were measured, and then the ratio of perfusion data, including CBFr, CBVr and MTTr were calculated. According to the CBFr values, all cases were divided into hyperperfusion group (HP) and hypoperfusion group (LP). The comparison of CBF, CBV and MTT values between the affected and contralateral hemispheres was tested by Mann-Whitney U analysis. The correlations of all perfusion data and seizure variables (age of first seizure, SSF and duration of epilepsy) were analyzed by Spearman correlation analysis.Results: In all, nine cases belonged to the LP group according to the significantly decreased CBF and CBV in the affected white matter compared to those in the contralateral’s (CBFr=-0.37±0.24, CBVr=-0.22±0.25, P<0.01), and the other 5 cases were in the HP group based on the significantly increased CBF and CBV of affected white matter (CBFr=0.31±0.05; CBVr=0.40±0.17, P<0.01). The age and SSF of LP group were slightly higher than HP group (age were 63.80 months & 48.83 months; SSF were 2.50 & 1.33), but no significant difference was present respectively (P=0.36, 0.12). Longer duration of epilepsy was related to lower CBF (more negative CBFr, r=-0.58, P<0.05) and low CBV (r=-0.55, P<0.05) on the affected side. Lower perfusion was associated with more frequent seizures (CBFr: r=-0.56, CBVr: r=-0.63, P<0.05).Conclusions: The perfusion of affected white matter in Sturge-Weber syndrome did not decrease continuously as illustrated by previous studies, whiles the relatively hyperperfusion was considered as a common phenomena. There are relationships between brain perfusion status and seizure severity in SWS.
[关键词] Sturge-Weber综合征;癫痫;磁共振成像;灌注,局部
[Keywords] Sturge-Weber syndrome;Epilepsy;Magnetic resonance imaging;Perfusion, regional

郑程程 大连医科大学附属第一医院放射科,116011

蔡兆诚 大连大学附属中山医院放射科,116001

冯洁 大连医科大学附属第一医院放射科,116011

牛田力 大连医科大学附属第一医院放射科,116011

苗延巍* 大连医科大学附属第一医院放射科,116011

通讯作者:苗延巍,E-mail:ywmiao716@yahoo.com.cn


基金项目: 国家自然科学基金 编号:81171321
收稿日期:2012-10-15
接受日期:2012-11-20
中图分类号:R445.2; R742.1 
文献标识码:A
DOI: 10.3969/j.issn.1674-8034.2013.02.003
郑程程,蔡兆诚,冯洁,等. Sturge-Weber综合征癫痫发作与脑血流动力学的相关性研究.磁共振成像, 2013, 4(2): 93-98. DOI:10.3969/j.issn.1674-8034.2013.02.003.

       Sturge-Weber综合征(Sturge-Weber syndrome,SWS),又称颅面血管瘤病,是一种罕见的先天性神经皮肤综合征。一般多为单侧发病。SWS的主要病理表现为累及软脑膜、面部三叉神经支配区及眼脉络膜的血管瘤。受累的脑组织因局部静脉血管畸形导致淤血、组织缺氧,进而皮层神经元变性、缺失及钙化。

       癫痫发作是SWS常见的临床表现。近来,有研究者发现SWS的临床症状不但与受累皮层缺血有关,而且脑白质微观结构和功能的变化也起着重要作用[1,2,3,4]。以往的PET及MRI研究发现,受累大脑区域的血流低灌注是SWS最常见的微循环变化,可能是导致神经功能损伤的关键因素[5,6,7,8,9,10]。但是,少数研究发现了相反现象:个别SWS患者在受累大脑皮层区出现高灌注的现象,并推测可能与近期的癫痫发作有关[5, 11]。目前,SWS的脑血流灌注状态及其与癫痫发作之间的关联性尚不清楚。

       动态磁敏感增强灌注成像(dynamical susceptibility contrasted perfusion imaging, DSC-PI)通过静脉内快速注射顺磁性对比剂,能够定量评估脑组织的微循环血流动力学变化。本研究旨在利用DSC-PI技术,对SWS病变白质区的灌注情况进行定量测量,进而探讨病变脑区白质灌注情况与癫痫状态,包括首次癫痫发作年龄、癫痫发作频率(score of seizure frequency, SSF)及癫痫持续时间的关系。

1 材料与方法

1.1 临床资料

       在2003年至2010年期间,14例临床确诊为SWS的患儿(本组病例资料由美国底特律医学中心附属儿童医院馈赠)进行MRI检查,其中男6例,女8例,中位年龄4.0岁(0.8~10.0岁)。SWS临床诊断标准:累及三叉神经眼神经(V1)、上颌神经(V2)分支分布的面部、眼脉络膜及软脑膜血管瘤,3个部位中有2个部位出现血管瘤即可诊断,而软脑膜血管瘤是纳入本研究的必要条件[12]。所有患儿均为单侧幕上病变。13例患儿有癫痫发作史,发作频率不等,较轻者<1次/年,严重者>10次/d。有癫痫发作的患儿均有服用不同种类的抗癫痫药物史。所有患儿详细的临床状况见表1

       本研究所有影像学检查及临床资料评估均得到医院人权调查委员会批准,并获得患儿父母或法定监护人的知情同意。

表1  Sturge-Weber综合征(SWS)患儿的临床资料情况
Tab.1  Clinical data of Sturge-Weber syndrome (SWS)

1.2 MRI设备与检查方法

       所有患儿均采用1.5 T MR扫描仪,使用标准头线圈。年龄<7岁的患儿在MRI检查前均注射芬太尼(1 μg/kg)及苯巴比妥(3 mg/kg)进行镇静。

       MRI扫描的主要序列及参数:(1)矢状面、轴面T1WI及增强轴面T1WI:TR 20 ms,TE 5.6 ms,层厚2 mm,矩阵512×192,FOV 256 mm ×256 mm,反转角25°,带宽50 Hz/pixel;(2)轴面FSE T2WI:TR 5020 ms,TE 106 ms,层厚6 mm,矩阵256×192,FOV 256 mm×256 mm,反转角160°,带宽130 Hz/pixel;(3)DSC-PI技术:TR 2200 ms,TE 98 ms,层厚4 mm,矩阵256×256,FOV 256 mm×256 mm,反转角60°,带宽750 Hz/pixel,共50个时相;对比剂为Gd-DTPA(马根维显,美国),剂量为0.1 mmol/kg,以2 ml/s的流率注入上肢静脉。

1.3 数据处理及分析

1.3.1 DSC-PI原始数据的后处理

       DSC-PI的后处理过程包括:将原始数据下载到个人计算机上,运用SPIN软件(signal process in neuroimaging,美国Wayne State University馈赠)进行后处理,首先获得每个像素的生成时间-信号曲线,进而分别生成脑血流量(cerebral blood flow, CBF)图、脑血容量(cerebral blood volume, CBV)图和平均通过时间(mean transit time,MTT)图。

1.3.2 病变位置及范围的确认

       病变的确认依据:(1)不同程度的软脑膜强化;(2)增粗、增多的静脉血管;(3)侧脑室内脉络丛增大、强化;(4)局限性脑萎缩。病变范围涵盖了所有上述病变的脑组织,而病变范围内的脑白质为灌注测量的目标区域(图1, 图2)。

图1, 2  女,4岁,右颞叶SWS。增强T1WI(图1)示右侧颞叶白质区域异常强化的血管影(白箭),对应的CBF图中(所示红色圆圈范围内;图2)也可观察相应的异常血管影
图3,4  患儿,女,0.8岁。脑血流量(CBF;图3)和脑血容量(CBV;图4)图示右侧大脑半球明显萎缩,蛛网膜下腔扩大。在CBF和CBV图上,ROI放置在病变侧和相应对侧大脑半球脑白质区,避开皮层血管和脑室
图5~7  患儿,女,10岁,癫痫发作频率1次/月(发作频率得分为3)。增强T1WI(图5)示左侧额颞枕叶体积减小,病变区软脑膜及侧脑室三角区脉络丛明显强化。PWI示左侧额叶及枕叶白质区域CBF(图6)和CBV(图7)较对侧明显减低(CBFr=-0.67;CBVr=-0.52)
图8~10  患儿男,1.8岁,癫痫发作频率:几次/年(发作频率得分为2)。之前T1WI(图8)可见右颞枕叶交界区有软脑膜及多个分支血管的强化,脑萎缩不明显。PWI显示右颞枕叶交界区CBF(图9)和CBV(图10)显著增加(CBFr=0.32, CBVr=0.31)
Fig. 1, 2  Girl, 4 years. Sturge-Weber syndrome (SWS) in right temporal lobe. Fig.1: On contrasted T1WI, multiple abnormal enhanced vessels were present in the white matter of right temporal lobe (white arrows). Fig.2: There was the same finds on the CBF map (seen as within the red circle).
Fig. 3, 4  Girl, 0.8 year. The right cerebral hemisphere was obviously atrophy and subarachnoid space was widened. On the CBF (Fig.3) and CBV (Fig.4) map, the ROIs were placed in the affected and controlateral white matter to avoiding the vessels in the grey matter and ventricle.
Fig. 5~7  A 10-year-old girl with SWS has seizure with frequency of one time per-month (SSF=3). On the contrasted T1WI (Fig.5), brain atrophy of left frontal, temporal and occipital lobe and obvious leptomeningeal and choroid plexus enhancement in the affected regions occurred. The significant decreased CBF (Fig.6) and CBV (Fig.7) in the involved areas were shown in the PWI (CBFr=-0.67, CBVr=-0.52).
Fig. 8~10  A 1.8-year-old boy with SWS has the several onset of seizure per-year (SSF=2). On the contrasted T1WI(Fig.8), slight brain atrophy of right temporal and occipital lobe and obvious leptomeningeal and multiple vessels enhancement in the affected regions were found. The significant increased CBF(Fig.9) and CBV(Fig.10) in the involved areas were shown in the PWI (CBFr=0.32, CBVr=0.31).

1.3.3 DSC-PI灌注值的测量及分析

       CBF直接反应脑组织的血流状况,通常用其评价脑组织灌注程度。因此,在确认病变位置及范围后,首先选取后处理的CBF图像,在病变区域脑白质范围内手工绘制类圆形ROI,大小在20~50个像素(相当于10~30 mm2),选取时尽量避开皮层区域及白质内异常走行的血管。然后通过ROI的复制,在对应的CBV、MTT图像上得到同样位置和大小的ROI,记录相应的CBF值、CBV值及MTT值。移动ROI至对侧脑白质"镜像"区域,记录相应的灌注值。利用同样的方法在同一层面病变及其对侧白质区域的其他位置再选取2~3个ROI,测量并记录灌注值。将于病变侧及对侧所测量的多个CBF、CBV及MTT值取平均值分别作为最终的测量值。图3, 图4显示ROI的放置。

       将病变区域(lesion)的灌注均值记录为CBFL、CBVL及MTTL;对侧脑半球(contralateral hemisphere)相应区域灌注均值为CBFC、CBVC、MTTC。同时,为了尽量避免系统性测量误差,本研究采用灌注比值(ratio),得到CBFr、CBVr、MTTr。计算公式:CBFr=(CBFL-CBFC)/(CBFL+CBFC);CBVr=(CBVL-CBVC)/(CBVL+CBVC);MTTr=(MTTL-MTTC)/(MTTL+MTTC)。根据CBFr值将患者分为高灌注(hyperperfusion, HP)组及低灌注(hypoperfusion,LP)组2组。

1.3.4 癫痫发病频率得分(score of seizure frequency, SSF)的计算

       根据临床提供发作频率情况,参照以往癫痫发作评分标准[13],结合现有临床资料将其评分量化,方便统计分析。对于每一例患儿,癫痫发作SSF的计算是基于以下的评分系统(表2)。

表2  癫痫发作频率得分表
Tab. 2  Score of epilepsy seizure frequency (SSF)

1.4 统计学方法

       应用社会科学统计软件包(SPSS)16.0版进行数据分析。对高、低灌注组病变侧与对侧的CBF、CBV及MTT值进行配对秩和检验;对癫痫状态的各因素(首次癫痫发作年龄、SSF及癫痫持续时间)与各灌注比值(包括CBFr、CBVr及MTTr)、病变白质区灌注值(包括CBFL、CBVL、MTTL)进行Spearman相关分析。P值<0.05为有统计学意义。

2 结果

2.1 SWS患者脑白质灌注值状态

       14例SWS患儿的DSC-PI测量结果见表3,其中9例CBFr为负值,受累白质区CBF及CBV较对侧明显减低(P<0.01),即病变侧为低灌注,属LP组(图5,图6,图7);5例CBFr为正值,且脑内病变白质区CBF及CBV较对侧显著增高(P<0.01),为HP组(图8,图9,图10)。

       与HP组相比,LP组的年龄及癫痫发作频率得分(SSF)均有增大趋势(年龄分别为48.83、63.80个月;SSF分别为1.33、2.50),但差异无统计学意义(P值分别为0.12、0.36)。

表3  14例SWS患儿灌注比值表
Tab.3  14 cases of the SWS children with perfusion ratio table

2.2 SWS受累白质区灌注参数及癫痫状态的相关性分析

       病变侧的CBFr值和CBV值与癫痫持续时间呈显著负相关(CBFr:r=-0.58,P<0.05;CBV:r=-0.55,P<0.05),即癫痫发作持续时间越长,CBFr值和CBV值越低;MTT、MTTr与癫痫发作持续时间无显著相关性。CBFr和CBVr与癫痫发作频率呈明显负相关,即癫痫发作越频繁,CBFr和CBVr值越低(CBFr:r=-0.56,P<0.05;CBV:r=-0.63,P<0.05)。MTT、MTTr与癫痫发作频率无显著相关性(P>0.05)。癫痫持续时间与发作频率无相关性(P>0.05)。首次癫痫发作年龄与各灌注参数均无相关性(P>0.05)。

3 讨论

3.1 SWS白质灌注异常的病理生理机制

       SWS是临床罕见疾病,癫痫发作、颜面部的葡萄酒色斑(血管痣)及青光眼为该病的三大临床症状,而癫痫发作通常被认为是软脑膜血管瘤的继发改变所致[12]。影像学检查是观察SWS颅内病变的重要手段,其典型表现包括软脑膜强化、异常增多增粗的血管(静脉)、脉络丛扩大并强化、皮层钙化及脑萎缩等。本组病例中,上述的影像表现均有不同比例的呈现。

       多数研究发现,SWS脑内的血流灌注存在异常。笔者通过DSC-PI定量测量及分析发现,相对于对侧,SWS受累白质区的血流灌注存在不均一性,即有相对低灌注(9例)及相对高灌注(5例)改变。以往的多数研究发现,SWS受累脑区血流相对降低、代谢水平下降是普遍现象[14]。SWS软脑膜血管瘤实际上是由增厚的软脑膜与异常静脉组成。组织学研究发现,SWS颅内皮质桥静脉到硬脑膜窦缺失或发育障碍,使其静脉引流受损,流入硬脑膜表面的皮质桥静脉血流减少,使软脑膜内静脉血流聚集,导致脉管扩张。同时侧支静脉也扩大、迂曲,深部髓质和室管膜下大脑静脉因缺乏离心向的静脉血流通路也可发生异常扩张的改变[15,16]。静脉淤血、扩张,形成血栓,会导致静脉压力增高,而压力增高会加剧静脉淤血、扩张及血栓的加重,进而形成恶性循环。随着这种慢性静脉功能受损的进行性加重,静脉血淤滞、血栓形成会造成相应动脉灌注的减低,这种灌注的减低主要表现在皮层区域[10, 17,18,19]。当皮层动脉灌注持续减低,相近的脑白质血容量及血流量也将逐渐减少。

       少数个例报道发现,SWS受累脑组织存在高灌注改变,并发现这种现象会出现在癫痫发作前后[5, 11]。一项单光子发射体层显像(SPECT)研究发现,血管自身的调节反应可能导致临床症状较轻的患者出现的血流高灌注现象[20,21]。本研究中,5例在病变侧脑白质区域出现相对高灌注改变,推测其原因可能为:(1)婴幼儿时期,髓鞘形成和高级皮质功能的建立使脑的代谢需求量增加,相应脑血流量也会生理性增加,这或许是年龄偏小患儿高灌注现象相对多的原因之一;(2)癫痫发作会使脑组织同样出现代谢需求量的增加,进而使脑灌注水平增加,因此近期有癫痫发作或发作较为频繁的患者在进行灌注加权成像(PWI)检查时可能会出现高灌注表现;(3)在静脉慢性功能不全出现但较轻时,脑组织内灌注毛细血管数目可保持正常,此时若出现轻微的动脉灌注异常,脑组织轻度缺血缺氧时,可以通过自身的调节机制增加脑血流灌注水平,从而出现代偿性的高灌注表现。由此推测,高灌注是一个暂时的现象,可能代表相对早期阶段的病理改变;而随着静脉慢性功能不全的加重,脑组织的静脉淤血、缺血缺氧超过机体的调节能力,就会出现低灌注改变;低灌注的出现可能提示持续的缺氧性损伤[22]

3.2 SWS受累白质区灌注参数及癫痫状态的相关性分析

       有研究发现[23],SWS病变区高灌注改变与癫痫发作有关,且出现在患儿出生第一年的首次癫痫发作之前。而本研究中表现为病变白质区域高灌注的患儿年龄均>1岁,说明高灌注不仅与1岁以前首次癫痫发作有关,可能在患儿每次的癫痫发作前后都会出现病变区相对高灌注的改变;而HP组患者发作频率较LP组增高的现象可以解释癫痫频繁发作可能与出现相对高灌注状态有关。

       本研究中笔者发现,SWS病变侧的CBFr值和CBV值与癫痫持续时间呈负相关,即癫痫发作持续时间越长,CBFr值和CBV值越低,表明随着时间的推移,灌注状态逐渐恶化。CBFr和CBVr与癫痫发作频率呈负相关,即癫痫发作越频繁,CBFr和CBVr值越低,表明SWS脑内的低灌注与慢性癫痫发作有关系,频繁发作可能会导致脑缺血和病情恶化[24]。由本研究结果可以推测,增加组织的灌注可能会控制癫痫的发作,而发作频率减低也可能阻止缺血损伤的恶化。Miao等[22]的纵向随访研究也进一步阐明,在SWS脑血流灌注状态与癫痫的严重程度存在确切的因果关系。

3.3 研究的局限性

       由于征募健康儿童志愿者的难度较大,本研究缺少年龄匹配的正常儿童作对照组;本研究的病例数较少,需继续增加病例进一步分析研究;研究中并未排除所有可能的影响因素(如药物的使用等),需在以后的研究中尽量排除避免其对测量数据的影响。

       总之,SWS受累白质区域的血流灌注并非持续降低,而存在相对高灌注状态;灌注状态与癫痫发作的频率和癫痫持续时间有相关性。

[1]
Juhasz C, Lai Ch, Behen ME, et al. White matter volume as a major predictor of cognitive function in Sturge-Weber Syndrome. Arch Neurol, 2007, 64(8): 1169-1174.
[2]
Deary IJ, Bastin ME, Pattie A, et al. White matter integrity and cognition in childhood and old age. Neurology, 2006, 66(4): 505-512.
[3]
Sivaswamy L, Rajamani K, Juhasz C, et al. The corticospinal tract in Sturge-Weber syndrome: a diffusion tensor tractography study. Brain Dev, 2008, 30(7): 447-453.
[4]
Juhasz C, Haacke EM, Hu J, et al. Multimodality imaging of cortical and white matter abnormalities in Sturge-Weber Syndrome. AJNR Am J Neuroradiol, 2007, 28(5): 900-906.
[5]
Pinton F, Chiron C, Enjolras O, et al. Early single photon emission computed tomography in Sturge-Weber syndrome. J Neurol Neurosurg Psychiatry, 1997, 63(5): 616-621.
[6]
Duncan DB, Herholz K, Pietrzyk U, et al. Regional cerebral blood flow and metabolism in Sturge-Weber disease. Clin Nucl Med, 1995, 20(6): 522-523.
[7]
Maria BL, Neufeld JA, Rosainz LC, et al. High prevalence of bihemispheric structural and functional defects in Sturge-Weber syndrome. J Child Neurol, 1998, 13(12): 595-605.
[8]
Lin DD, Barker PB, Kraut MA, et al. Early characteristics of Sturge-Weber syndrome shown by perfusion MR imaging and proton MR spectroscopic imaging. AJNR Am J Neuroradiol, 2003, 24(9): 1912-1915.
[9]
Evans AL, Widjaja E, Connolly DJ, et al. Cerebral perfusion abnormalities in children with Sturge-Weber Syndrome shown by dynamic contrast bolus magnetic resonance perfusion imaging. Pediatrics, 2006, 117(6): 2119-2125.
[10]
Lin DD, Barker PB, Hatfield LA, et al. Dynamic MR perfusion and proton mr spectroscopic imaging in Sturge-Weber syndrome: correlation with neurological symptoms. J Magn Reson Imag, 2006, 24(2): 274-281.
[11]
Oguz KK, Senturk S, Ozturk A, et al. Impact of recent seizures on cerebral blood flow in patients with sturge-weber syndrome: study of 2 cases. J Child Neurol, 2007, 22(5): 617-620.
[12]
Thomas-Sohl KA, Vaslow DF, Maria BL. Sturge-Weber syndrome: a review. Pediar Neurol, 2004, 30(5): 303-310.
[13]
Kelley TM, Hatfield LA, Lin Doris DM, et al. Quantitative analysis of cerebral cortical atrophy and correlation with clinical severity in unilateral Sturge-Weber syndrome. J Child Neurol, 2005, 20(11): 867-870.
[14]
Pfund Z, Kagawa K, Juhász C, et al. Quantitative analysis of gray- and white-matter volumes and glucose metabolism in Sturge-Weber syndrome. J Child Neurol, 2003, 18(2): 119-126.
[15]
Bentson JR, Wilson GH, Newton TH. Cerebral venous drainage pattern of the Sturge-Weber syndrome. Radiology, 1971, 101(1): 111-118.
[16]
Rhoton AL Jr. The cerebral veins. Neurosurgery, 2002, 51(4Suppl): 159-205.
[17]
Namer IJ, Battaglia F, Hitsch E, et al. Subtraction Ictal SPECT co-registered to MRI (SISCOM) in Sturge-Weber syndrome. Clin Nucl Med, 2005, 30(1): 39-40.
[18]
Juhasz C, Chugani DC, Muzik O. et al. Is epileptogenic cortex truly hypometabolic on interictal position emission tomography? Ann Neurol, 2000, 48(1): 88-96.
[19]
Lee JS, Asano E, Muzik Q. Sturge-Weber syndrome: correlation between clinical course and FDG PETfinding. Neurology, 2001, 57(2): 189-195.
[20]
Okudaira Y, Arai H, Sato K. Hemodynamic compromise as a factor in clinical progression of Sturge-Weber syndrome. Child’s Nerv Syst, 1997, 13(4): 214-219.
[21]
Yu TW, Liu HM, Lee WT. The correlation between motor impairment and cerebral blood flow in Sturge-Weber syndrome. Eur J Paediatr Neurol, 2007, 11(2): 96-103.
[22]
Miao Y, Juhasz C, Wu J, et al. Clinical correlates of white matter blood flow perfusion changes in Sturge-Weber syndrome: a dynamic MR perfusion-weighted imaging study. AJNR Am J Neuroradiol, 2011, 32(7):1280-1285.
[23]
Comi AM. Pathophysiology of Sturge-Weber syndrome. J Child Neurol, 2003, 18(8): 509-516.
[24]
Alkonyi B, Miao Y, Wu J, et al. A perfusion-metabolic mismatch in Sturge-Weber syndrome: a multimodality imaging study. Brain Dev, 2012, 34(7): 553-562.

上一篇 代谢综合征患者的脑MR波谱研究
下一篇 MR磁量图对自发性脑出血患者脑铁过量沉积的定量研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2