分享:
分享到微信朋友圈
X
RSNA回顾
2012年北美放射学年会关节影像学研究进展
刘士锋 冯卫华 徐文坚

刘士锋,冯卫华,徐文坚. 2012年北美放射年会关节影像学研究进展.磁共振成像, 2013, 4(3): 172-177. DOI:10.3969/j.issn.1674-8034.2013.03.003.


[摘要] 2012年度北美放射年会(RSNA)共有骨关节系统影像学研究论文约500余篇,其中关节影像学研究论文达200余篇,关于髋、膝、踝、肩、腕等关节软骨、周围韧带、肌腱损伤、关节病变术前评估及术后随访等方面研究较多,其中关节软骨研究主要集中于应用MRI新技术对损伤后软骨改变、软骨修复等进行定性和定量研究。对于四肢末端小关节及关节微结构研究相对较少,主要为诊断RA的新技术研究。此外,对关节US的研究较前增多。作者对以上方面进行简要综述,以期对今后关节影像学研究提供帮助。
[Abstract] The Radiological Society of North America (RSNA) represents one of the highly prestigious medical societies. About five hundred studies of musculoskeletal system were published in RSNA 2012, in which more than 200 were about joint imaging. The exhibits, posters and studies were mainly about hip, knee, ankle and shoulder, wrist joints etc. Diffusion weighted imaging, T2 mapping, dynamic contrast-enhanced MRI, dGEMRIC, MARS, gagCEST MRI and MR arthrography, were used for detecting the qualitative and quantitative of articular cartilage changes. Studies in extremities joints and microstructures were rare, which were mainly about new techniques diagnosing RA. In addition, the studies in US were more than before. This article is a review of the radiographic progression of joint system in RSNA 2012.
[关键词] 磁共振成像;关节;韧带;综述文献
[Keywords] Magnetic resonance imaging;Joints;Ligaments;Review literature

刘士锋 青岛大学医学院附属医院放射科,青岛 266003

冯卫华 青岛大学医学院附属医院放射科,青岛 266003

徐文坚* 青岛大学医学院附属医院放射科,青岛 266003

通讯作者:徐文坚,E-mail:cjr.xuwenjian@vip. 163.com


收稿日期:2013-02-16
接受日期:2013-04-02
中图分类号:R445.2; R684 
文献标识码:A
DOI: 10.3969/j.issn.1674-8034.2013.03.003
刘士锋,冯卫华,徐文坚. 2012年北美放射年会关节影像学研究进展.磁共振成像, 2013, 4(3): 172-177. DOI:10.3969/j.issn.1674-8034.2013.03.003.

       2012年度北美放射年会(RSNA)共有骨关节系统影像学研究论文约500余篇,其中关节影像学研究论文达200余篇,关于髋、膝、踝、肩、腕等关节软骨、周围韧带、肌腱损伤、关节病变术前评估及术后随访等方面研究较多,其中关节软骨研究主要集中于应用MRI新技术对损伤后软骨改变、软骨修复等进行定性和定量研究。对于四肢末端小关节及关节微结构研究相对较少,主要为诊断RA的新技术的研究。此外,对关节US的研究较以前增多。笔者对以上方面进行简要综述,以期对今后关节影像学研究提供帮助。

1 髋关节影像学研究

       髋关节作为人体较大和较为重要的关节之一,一直以来都是影像学家关注的重要部位,尤其是对髋关节病变术前影像学评估及术后影像学随访更是研究的热点。目前髋关节的影像学研究以MRI为主,MR关节造影多用于关节周围韧带及髋关节盂唇病变的显示。

       股骨髋臼撞击综合征(femoroacetabu lar impingement,FAI)是股骨颈部或髋臼边缘异常、在髋关节旋转活动时引起反复创伤,导致的髋臼盂唇和关节软骨损伤。Tishi等[1]回顾了导致FAI的髋臼和股骨颈的解剖变异及诊断FAI常用的影像学方法,(如单线图、平片、CT、MRI等)。Hwang等[2]回顾性分析了82例FAI和非FAI患者的髋关节3D-CT关节造影成像,结果显示FAI患者的关节周围的纤维囊性改变率(46.3%)大于对照组(20.3%) ,且FAI组的关节周围纤维囊性改变平均直径为6.0 mm,而非FAI组仅为5.5 mm,表明,与未患FAI的髋关节相比,FAI患者的髋关节更易发生纤维囊性变,尤其是Cam型FAI患者。Long[3]对25例患有股骨颈压力骨折的影像进行研究,结果示股骨颈压力性骨折与Pincer型FAI有很大关联,其中部分也与Cam型FAI有关联。

       常规MRI在髋臼盂唇成像方面具有局限性,故常用MR关节造影及其他先进影像学技术以更好显示盂唇病变。Michael等[4]研究了腿部牵引MR关节造影诊断Cam型FAI的准确性,其对70例Cam型或Cam-Pincer混合型FAI患者在腿部牵引和未牵引两种情况下进行1.5 T MRI关节造影,结果显示在腿部牵引情况下髋关节关节造影可清楚地显示Cam型FAI患者髋关节的髋臼软骨分离和其他病理学改变。Riccardo等[5]对19例FAI患者的髋关节在术前行3.0 T dDEMRIC径向平面成像和关节镜检查,结果示单纯MRI很难显示髋臼软骨病变的形态学改变,但3.0 T dDEMRIC可有效预测软骨异常,从而改善FAI患者髋臼软骨的术前评估。

       髋关节置换为髋关节疾病的常用手术,因此术后影像学评估和术后减少成像伪影方面都有很大的临床价值。Jan等[6]和Eric等[7]利用先进的可减少金属伪影的MRI序列(MARS、SEMAC、MAVRIC和UTE-MSI等),回顾分析了全髋关节置换术后的一般影像表现和潜在并发症的表现,从而给临床骨科医师以帮助。Imran等[8]描述了髋关节置换术后疼痛的超声表现,并将其与MARS MRI进行比较,证实超声为髋关节置换术后髋关节融合的金标准。Napoleon[9]等描述了CT在评估全髋置换术(THA)中的影像学价值,并回顾了THA并发症的CT表现。Shiraz等[10]用多种影像学方法(平片、MARS MRI、SPECT-CT)评估了金属-金属(MOM)髋关节置换术以避免漏诊。

       在髋关节置换术后假体周围的反应方面,Shiraz等[11]和Eric等[12]分别对179例髋关节置换患者(200个MOM髋关节)、175例ASR XLMOM全髋置换患者(192个髋关节)行MRS,结果均显示,假瘤在髋关节置换术后患者中有高发生率,即使患者髋关节功能良好。Iris等[13]对54例MOM髋关节置换患者(61个髋关节)行MRI检查并对其体内进行金属离子浓度测定,发现52%的患者体内有假瘤,且其平均BMILs升高,认为MOM髋关节置换患者的MRI信号改变与金属沉积导致的顺磁性效应有关。Alice[14]对214例髋关节置换术后疼痛的患者行SPECT扫描,结果示SPECT有助于查找疼痛病因,排除假体关节感染、关节松弛和其他关节外病变。

       相对于成人,婴幼儿的髋关节影像研究较少,Camilo等[15]对27例婴幼儿(平均年龄:3个月)的髋关节行动态MR增强扫描,骺软骨、长骨生长部、干骺端松质及骨髓均可清楚显示,认为动态MR增强扫描可清楚显示婴幼儿髋关节各结构,有助于洞察各结构灌注状况。

2 膝关节影像学研究

2.1 半月板影像学研究

       膝关节损伤研究主要以MRI新技术评估软骨病变,尤其半月板病变为主,而在约11篇关于半月板病变的研究中,大部分研究针对半月板撕裂。

       在半月板撕裂的常规诊断方面,Guilherme等[16]指导放射科医师对于半月板撕裂MRI应报告哪些征象,从而临床医师可根据此征象和关节镜检查制定出治疗方案。Long[17]、Sung等[18]、Frank等[19]和Maria等[20]分别通过用MR同容积3D脂肪抑制VISTA序列、3D同向自旋回波序列(TSE-SPACE)、MR对比增强和脂肪抑制3D同向自旋回波序列(TSE-SPACE)成像,对膝关节半月板撕裂进行评估,认为上述新技术更有助于显示半月板撕裂及类型,有助于指导手术。Park等[21]关于半月板MRI的L/T比值(半月板挤压与内侧半月板的最大横径长度之比)的研究有助于半月板撕裂的诊断,半月板撕裂的L/T比值约为13%。

2.2 膝关节韧带及周围软组织影像学研究

       膝关节前、后交叉韧带是维持膝关节稳定性的重要结构,而对交叉韧带的影像学研究不仅包括韧带受损的病因,更多研究关注于交叉韧带损伤所引起的周围结构改变和韧带损伤术后组织结构的影像学表现。Joseph等[22]回顾性分析了100例急性前交叉韧带(anterior cruciate ligament tears,ACL)撕裂患者的MRI,并根据撕裂位置将其分为6类。John等[23]发现双源CT (dual energy computed tomography ,DECT)可减弱骨影像,增强骨髓水肿影像,从而有利于ACL损伤的诊断。

       对ACL损伤再造术后的研究亦引起较多关注。Ha[24]的研究表明关节镜ACL再造术后常出现关节内钙化。Long[25]对50例ACL再造术后患者(24例膝关节临床上表现稳定,26例不稳定)行平片、MRI和关节镜检查,结果示ACL再造术成功与失败病例之间的股管后壁和股管的方向之间存在差异。Amin等[26]对45例ACL双束重建术后患者行MRI检查,结果示ACL双束重建术后移植物前内侧和后外侧信号强度增强常与部分撕裂有关,前内侧移植物撞击综合征时常表现为部分撕裂和信号强度增强。

       后交叉韧带(posterior cruciate ligament,PCL)在屈膝时紧张,可防止胫骨后移。Long[27]回顾性研究了45例PCL慢性损伤患者的MR图像,结果显示约1/3患者的MRI表现正常,这就提示诊断PCL慢性损伤仅靠MRI是不够的,必须要结合临床。

       腘肌是膝关节中相对较小但较重要的肌肉,可使膝关节屈曲并使小腿内旋。腘肌病变往往不像半月板和韧带那样受到重视,但可以为膝关节的其他损伤提供诊断线索。诊断不及时可导致膝关节功能退化,其炎性改变可引起膝关节疼痛,故在影像学研究中应加强对其认识。Davide等[28]描述了MR-US融合成像技术对腘肌的正常解剖的显示和对腘肌损伤诊断的重要性。Saboeiro[29]回顾性分析了100例腘肌肌腱损伤患者的MR图像,认为腘肌肌腱与坐骨结节不连接时,其远端收缩程度减弱。

2.3 髌骨影像学研究

       髌骨参与膝关节构成,具有保护膝关节,避免股四头肌对股骨髁软骨面摩擦,且可维持膝关节稳定性和防止膝关节过度活动。膝前疼痛及髌骨对合不良是临床行X线和CT检查最常见的原因之一,尽管髌骨定比测量在X线上研究较多,但在CT和MRI上关于髌骨高度的参照尺度尚无统一结论。Luis等[30]回顾性分析了50例急性髌骨错位患者的MR图像,认为MRI表现为滑车发育不良常提示继发于急性髌骨错位的髌骨内侧的骨软骨损伤。

3 踝关节影像学研究

       踝关节韧带和肌腱损伤易导致关节不稳,但显示及辨认困难。Susanna等[31]评估CT在诊断踝关节创伤内的肌腱或韧带损伤的作用。David等[32]介绍了与踝关节内翻相关的9种骨折。Albert等[33]回顾了足和踝关节夏科氏关节病的术前和术后影像学评估,夏科氏关节病的早期诊断和及时治疗可防止严重并发症如足畸形、溃疡和截肢等的发生。

       踝关节疾病治疗较前有较大进展。Angthong等[34]介绍了治疗顽固性足和踝关节疾病的新技术-荧光和超声强烈刺激下的富血小板血浆注射疗法的指征、禁忌证和并发症等。Collette等[35]介绍了治疗踝关节关节内感染的新技术,即US引导下的关节内注射。

4 肩关节影像学研究

       肩关节结构复杂,MRI可清晰显示骨质、盂唇、韧带、肌肉、肌腱等结构及病变,已被公认,而常规X线检查可发现病变伴发征象,从而起辅助诊断作用。

       肩袖病变仍然是肩关节影像学研究中的焦点问题。Ha[36]回顾性研究了200例肩袖撕裂患者的MR图像,其中51例为肩袖完全撕裂,认为肩袖脂肪萎缩随撕裂范围增大而程度增强,因此,肩袖撕裂应及时治疗。Long[37]对59例肩袖修复术后患者行1.5 T和3.0 T MR检查,认为肩袖修复术后可出现肩袖再损伤,肩袖厚度缺陷和收缩可提示肩袖再损伤。

5 肘关节影像学研究

       在肢体大关节中,肘关节影像学研究较少。Filippo等[38]回顾了40例棒球投手的3.0 T MR图像,认为肘关节损伤主要为急慢性内侧副韧带疾病、肌腱炎、肌腱撕裂和尺神经病变等。Koo等[39]回顾性研究了13例手术证实的肘关节横向皱襞综合征的患者的MR图像,把正常人群的肘关节MRI作为对照,结果示实验组皱襞宽度在冠状面和矢状面上分别为6.2 mm、6.5 mm,而对照组分别为3.6 mm、4.8 mm,认为横向皱襞综合征的患者的皱襞宽度和皱襞宽度与桡骨头比值均比对照组大,有利于横向皱襞综合征的术前诊断。

6 腕关节影像学研究

       腕关节体积小而结构复杂,显示及辨认同样存在困难。Luis[40]回顾了尺侧腕关节疼痛的病因,包括三角纤维软骨(triangular fibrocartilage complex,TFCC)损伤,尺侧腕伸肌病变、远侧尺桡关节松弛、神经纤维瘤、尺骨撞击综合征、尺腕撞击、钩月撞击等,并指出MRI是诊断尺侧腕关节病变的主要工具,但其在诊断Palmer B型TFCC损伤和腕管不稳定方面存在局限性,CT关节造影和MRI关节造影可克服这些局限性而更有利于腕关节疾病的诊断。但Torriani[41]对10名健康志愿者的腕关节(4男,6女)用3.0 T MR 3D FSE和3D FFE序列与常规2D FSE脂肪饱和序列对比,证实在评估腕关节内在病变方面3D个向同性成像的图像质量还不足以和2D FSE序列相抗衡。

       为克服传统MRI在诊断腕关节疾病中的缺点,出现了一些新的诊断技术。Josep等[42]用320层MDCT四维成像观察了运动的腕关节腕管的活动情况和关节间隙变化,从而从动态上发现关节不稳定的原因。Bruno等[43]指出关节造影不仅可诊断三角纤维软骨、舟月背侧韧带、月三角背侧韧带病变,还可诊断其他少见的韧带病变如外在韧带和其他内在韧带的病变。Torriani[44]对53例腕关节痛的患者的腕关节用传统PDW序列和GRE序列与MR关节造影对比,证实,MR关节造影在诊断TFCC损伤、舟月背侧韧带和月三角背侧韧带损伤方面均比PDW和3D GRE序列敏感。

7 四肢小关节的影像学研究

       相对于大关节影像学研究,对小关节的影像学研究相对较少。Young等[45]回顾了常发生在小关节的不同疾病的CT和MRI表现。Alok等[46]指出MRI是诊断类风湿性关节炎(rheumatoid arthritis,RA)的关键。Fessell[47]对100例关节痛、关节僵硬和关节肿胀的患者行高频US和3.0 T MRI检查,分析结果后认为在RA早期进展中,软组织改变早于软骨改变和骨改变。Tatsuya等[48]对120例疑有RA的患者用MR对比增强成像与其DWI和T1WI融合成像对比,证实DWI和T1WI融合成像可达到几乎与MR对比增强成像几乎相同的诊断效果。Christian等[49]对10例RA患者的掌指关节同时行MPH-SPECT和MRI检查,得出经MTX治疗后,99Tcm-DPD的吸收频率越高,滑膜炎和骨髓水肿会减少,但骨质破坏会增多。Wang等[50]对15例痛风患者以GSI方式行CT 750 HD扫描,数据传往AW 4.4工作站进行处理,认为GSI成像可检测尿酸沉积,计算尿酸浓度,并可使尿酸沉积呈有色显示,有助于诊断亚临床尿酸沉积,此外尿酸的定量分析还可用于对药物降低急性痛风患者尿酸浓度的有效性进行随访和评估。

8 关节软骨的影像学研究

       软骨在平片和CT中一般不显示,传统关节软骨成像为MR成像。Torriani[51]对81例关节镜证实的膝关节损伤的患者行3.0 T 2D序列和同容积性3D脂肪抑制VISTA序列成像并与关节镜的软骨损伤分级进行对比,认为与2D序列相比,同容积性3D脂肪抑制VISTA序列成像在软骨损伤方面有更高的诊断价值,VISTA序列可被用于评估软骨大小和厚度。

       Siega[52]对志愿者的膝关节行3.0 T和7.0 T gagCEST成像,并将两者进行比较,认为与7.0 T MR gagCEST和3.0 T MR gagCEST结果的强关联性证实了3.0 T MR gagCEST可在临床上用于评估软骨内黏多糖和监测病变内黏多糖含量的变化。

       T2 mapping是基于T2弛豫时间的成像技术,可更直观地显示不同体素T2值的后处理图像。23 Na MRI技术近年来也常被用于软骨损伤的研究。Stefan等[53]用7.0 T MR T2-mapping技术和23Na成像技术对6具新鲜尸体的踝关节的进行扫描,结果示36个ROI有18个位于胫骨软骨和距骨软骨,钠与黏多糖呈正相关,水与黏多糖呈负相关,作者认为7.0 T MR 23Na成像和T2-mapping成像可作为非侵入性检查用于踝关节内胫骨软骨和距骨软骨的评估。

       Tiel等[54]对20例膝关节软骨炎早期患者7 d内行2次3.0 T MR 3D FSPGR dGEMRIC扫描,结果示3.0 T MR 3D dGEMRIC成像可用于早期关节炎患者的软骨的评估并可取得良好效果,因其对软骨具有高度敏感性,故其也可用于对骨关节炎的长期研究。

       纵观2012年RSNA骨关节系统影像学研究报道,关节影像学研究约占2/5,研究内容以髋、膝、肩、腕等关节为主,包括关节周围韧带、肌腱、关节软骨及关节术后影像学评估,成像技术多以CT及MRI,尤以MRI新技术应用研究为主,包括DWI、DWI-T1WI融合成像、T2 mapping、MR对比增强、MR关节造影、dGEMRIC和US-MRI融合成像等,另外关于US在关节病变诊断和治疗方面的研究也有所突破,值得国内学者借鉴。

[1]
Tishi N, Priya S, Mark W, et al. Pictorial review of femoro acetabular impingement. Chicago: RSNA, 2012: DOI: .
[2]
Hwang SY, Yang A, Do KK, et al. Are Fibrocystic changes at femoral head and neck truly more common in hips with femoroacetabular impingement (FAI)? 3D CT assessment in hips with FAI vs hips without FAI. Chicago: RSNA, 2012: DOI: .
[3]
Long S. The association of femoral neck stress fractures with femoral acetabular impingement. Chicago: RSNA, 2012: DOI: .
[4]
Michael K, Markus R, Petr V, et al. Acetabular Cartilage Delamination in Femoroacetabular Cam Impingement: Diagnostic accuracy of MR arthrography with and without leg traction in comparison to arthroscopy. Chicago: RSNA, 2012: DOI: .
[5]
Riccardo L, Catherine NP, Daniele A, et al. Effective prediction of cartilage damage in femoroacetabular impingement with standardized dGEMRIC on radial imaging planes at 3 tesla. Chicago: RSNA, 2012: DOI: .
[6]
Jan F, Theodore M, Stephanie G, et al. MR imaging of hip arthroplasty. Chicago: RSNA, 2012: DOI: .
[7]
Eric C, Won B, Sheronda S, et al. Imaging of current generation total hip arthroplasty. Chicago: RSNA, 2012: DOI: .
[8]
Imran S, Keshthra S, Adrian L, et al. Optimizing ultrasound of the painful hip arthroplasty: demonstrating a novel protocolized approach. Chicago: RSNA, 2012: DOI: .
[9]
Napoleon MR, Xavier T, Sebastian G, et al. CT imaging of total hip replacement complications. Chicago: RSNA, 2012: DOI: .
[10]
Shiraz S, Keshthra S, Johann H, et al. Multimodality assessment of Metal-on-Metal hip arthroplasties: never miss a diagnosis again on plain radiographs, MARS MRI and SPECT-CT. Chicago: RSNA, 2012: DOI: .
[11]
Shiraz S, Laura G, Keshthra S, et al. MARS MRI of 200 Metal-on-Metal hip arthroplasties: a prospective cohort study. Chicago: RSNA, 2012: DOI: .
[12]
Eric YC, San D, James LM, et al. MRI after ASR XL Metal-on-Metal total hip arthroplasty: does symptomatology correlate with MR imaging findings? Chicago: RSNA, 2012: DOI: .
[13]
Iris E, Ramat G, Einat S, et al. Metal-on-Metal hip replacement: correlation between blood Metal ions levels and MRI signal intensity of different body tissues. Chicago: RSNA, 2012: DOI: .
[14]
Alice Ha. The unexplained painful hip arthroplasty: SPECT-CT as a diagnostic tool. Chicago: RSNA, 2012: DOI: .
[15]
Camilo EJ, Philadelphia, Dmitry K, et al. Normal perfusion of the infant hip: evaluation using dynamic gadolinium-enhanced MRI. Chicago: RSNA, 2012: DOI: .
[16]
Guilherme N, Thiago C, Conrado C, et al. Meniscal tears: how and what to report? Chicago: RSNA, 2012: DOI: .
[17]
Long S. Iso-volumetric 3D fat suppressed VISTA sequence in evaluating radial tear and root tear of the meniscus. Chicago: RSNA, 2012: DOI: .
[18]
Sung JK, Won HJ, Maria C, et al. Meniscal tears in young adults: comparison of diagnostic performance between 3D isotropic turbo spin-echo MR imaging and 2D conventional MR imaging at 3.0 T. Chicago: RSNA, 2012: DOI: .
[19]
Frank W, David TF, Yang TZ, et al. Meniscal damage of the posterior horns is associated with localized synovitis on contrast-enhanced MRI: The MOST Study. Chicago: RSNA, 2012: DOI: .
[20]
Maria C, Jee WH, Jung JY, et al. Diagnosis of meniscal tears in discoid meniscus with fat-suppressed 3D isotropic intermediate Turbo spin-echo sequence at 3.0 T. Chicago: RSNA, 2012: DOI: .
[21]
Park H, Kim JH, Lee SY, et al. Medial meniscal root tears and meniscal extrusion transverse length ratios on MRI. Chicago: RSNA, 2012: DOI: .
[22]
Joseph CG, Louis WM, Kara L, et al. MR evaluation of location and frequency of anterior cruciate ligament tears. Chicago: RSNA, 2012: DOI: .
[23]
John H, Katrina GM, Lee B, et al. Usefulness of dual energy computed tomography in the assessment of patients with anterior cruciate ligament tears. Chicago: RSNA, 2012: DOI: .
[24]
Ha A. Intraarticular calcifications following arthroscopic ACL reconstruction: prevalence and significance. Chicago: RSNA, 2012: DOI: .
[25]
Long S. Femoral tunnel position and orientation predict failure of grafts in ACL Reconstruction. Chicago: RSNA, 2012: DOI: .
[26]
Amin MF. MRI evaluation of the knee after double bundle acl reconstruction: association of graft findings. Chicago: RSNA, 2012: DOI: .
[27]
Long S. MRi findings of chronic injury of posterior cruciate ligament. Chicago: RSNA, 2012: DOI: .
[28]
Davide O, Emanuele F, Giulio F, et al. Normal anatomy of hamstring muscles: MR-US fusion imaging detailed didactic approach. Chicago: RSNA, 2012: DOI: .
[29]
Saboeiro G. The sacrotuberous ligament: continuity on MR images with torn hamstring tendons suggesting role in reinforcing ligament attachment site to ischial tuberosity. Chicago: RSNA, 2012: DOI: .
[30]
Luis SB, Holly D, James S, et al. Trochlear dysplasia and lateralization of the tibial tubercle on MR imaging: is it associated with acute transient patellar dislocation and osteochondral injuries? Chicago: RSNA, 2012: DOI: .
[31]
Susanna S, Craig C, Nicholas B, et al. Ankle CT for trauma: did you think there was a tendon, retinacular or ligamentous injury too? Chicago: RSNA, 2012: DOI: .
[32]
David L, Michael R, Hicham M. Even achilles had a weakness: MR imaging of heel pain. Chicago: RSNA, 2012: DOI: .
[33]
Albert S, Hannah K, Laurie L, et al. Review of pre- and post-treatment imaging of charcot arthropathy of the foot and ankle. Chicago: RSNA, 2012: DOI: .
[34]
Angthong C, Angthong W. Platelet-rich plasma treatment in the recalcitrant hindfoot and ankle diseases: the novel techniques of injection and abrasive stimulation under fluoroscopy and ultrasonography. Chicago: RSNA, 2012: DOI: .
[35]
Collette E, Matt O, Carol D, et al. Ultrasound guided interventions of the foot and ankle: a review of technique and clinical outcomes. Chicago: RSNA, 2012: DOI: .
[36]
Ha A. Rotator cuff fatty atrophy: is there an association with the location and/or size of full thickness rotator cuff tears? Chicago: RSNA, 2012: DOI: .
[37]
Long S. Diagnosis of retear of rotator cuff after arthroscopic repair with conventional shoulder mr imaging. Chicago: RSNA, 2012: DOI: .
[38]
Filippo DG, John C, Avneesh C, et al. Spectrum of elbow injuries in baseball pitchers: 3 tesla mri imaging. Chicago: RSNA, 2012: DOI: .
[39]
Koo JH, Park KJ, Oh YJ, et al. Diagnosis of lateral synovial plica syndrome of the elbow joint: the size criterion of synovial plica on MR imaging. Chicago: RSNA, 2012: DOI: .
[40]
Luis C, Piñal FD, Canga A, et al. Ulnar wrist pain: a review of current diagnostic imaging approaches. Chicago: RSNA, 2012: DOI: .
[41]
Torriani M. Qualitative and quantitative assessment of isotropic 3D wrist MR imaging: comparison with 2D intermediate-weighted fast-spin-echo with fat saturation. Chicago: RSNA, 2012: DOI: .
[42]
Josep M, Javier A, Juan C, et al. Four-dimensional computed tomography imaging of the wrist: a novel technique to evaluate dynamic instabilities. Chicago: RSNA, 2012: DOI: .
[43]
Bruno BM, Bruna S, Tatiana T, et al. MR-arthography of the wrist: beyond TFCC and ligaments of first row. Chicago: RSNA, 2012: DOI: .
[44]
Torriani M. Comparative evaluation of conventional mr pulse sequences and direct MR arthrography in the evaluation of tears of the triangular fibrocartilage complex (TFCC) and intrinsic ligaments in wrist. Chicago: RSNA, 2012: DOI: .
[45]
Young SL, Jang GC, Jisook Y, et al. What happens in the facet joint? a radiographic review of facet joint pathology. Chicago: RSNA, 2012: DOI: .
[46]
Alok B, Narasimhachar P, Steven M. MR, the window into rheumatoid arthritis. Chicago: RSNA, 2012: DOI: .
[47]
Fessell D. Imaging in early stage rheumatoid arthritis: ultrasound and MRI correlation. Chicago: RSNA, 2012: DOI: .
[48]
Tatsuya M, Kanae T, Shigeki U, et al. Evaluation of synovitis by means of ra (rheumatoid arthritis) using image fusion of DWI (diffusion weighted image) and T1WI (T1-weighted image). Chicago: RSNA, 2012: DOI: .
[49]
Christian B, Duesseldorf, Benedikt O, et al. Combined high-resolution single photon emission computed tomography and magnetic resonance imaging for therapy monitoring in early rheumatoid arthritis. Chicago: RSNA, 2012: DOI: .
[50]
Wang X, Liu B, Li XH, et al. Preliminary study of gemstone spectral imaging(GSI) for detecting uric acid depositing in tophaceous gout with uric acid mapping. Chicago: RSNA, 2012: DOI: .
[51]
Torriani M. Imaging of the articular cartilage of the knee: diagnostic value of isovolumetric 3D fat-suppressed VISTA sequence imaging at 3.0 T. Chicago: RSNA, 2012: DOI: .
[52]
Siege D. GagCEST imaging of knee cartilage on a clinical 3 T MRI system: assessment of feasibility and clinical relevance. Chicago: RSNA, 2012: DOI: .
[53]
Stefan Z, Sebastian A, Vladimir J, et al. Sodium magnetic resonance (MR) imaging and T2-mapping at 7 T with histological correlation in tibial and talar cartilage of ex-vivo ankle joint. Chicago: RSNA, 2012: DOI: .
[54]
Tiel JV, Rotterdam ZH. Reproducibility of 3D delayed gadolinium enhanced MRI of cartilage of the knee at 3.0 tesla in patients with early-stage osteoarthritis. Chicago: RSNA, 2012: DOI: .

上一篇 2012年北美放射学年会前列腺影像学最新研究进展
下一篇 2012年北美放射学年会儿科影像学进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2