Share:
Share this content in WeChat
X
CLINICAL ARTICLE
3D-ASL assessment of cerebral blood flow changes in chronic stroke patients
MIAO Peifang  WANG Caihong  WEI Ying  WU Luobing  WANG Yingying  GUO Yafei  LI Peng  CHENG Jingliang 

Cite this article as: Miao PF, Wang CH, Wei Y, et al. 3D-ASL assessment of cerebral blood flow changes in chronic stroke patients[J]. Chin J Magn Reson Imaging, 2021, 12(2): 1-5. DOI:10.12015/issn.1674-8034.2021.02.001.


[Abstract] Objective To evaluate resting-state cerebral blood flow (CBF) and the relationship between cerebral blood flow and cognitive function in well-recovered patients 6 months after subcortical ischemic stroke used 3D arterial spin labeling (3D-ASL) imaging. Materials andMethods A total of 29 well-recovered patients 6 months after subcortical ischemic stroke patients and 30 healthy subjects were investigated to undergo 3D arterial spin labeling (3D-ASL) using GE Discovery MR 750 3.0 Tesla MR scanner and behavioral tasks. The CBF maps were processing via SPM8 in Matlab. The GLM was applied to quantitatively compare group differences in CBF throughout the whole brain with age, gender and the years of education as covariates of no interest with SPM8. Moreover, we performed partial correlation analysis to investigate the association between the clinical behavior scores and the statistics results of CBF with SPSS 17.0.Results The voxel-wise analysis showed that the well-recovered stroke patients exhibited increased CBF in contralesional superior frontal gyrus (SFG) and supramarginal gyrus (SMG) compared with normal controls (P<0.05, cluster size>1054 voxels). Moreover, the increased CBFs of the contralesional SFG (r=-0.41, P=0.037), and supramarginal gyrus (SMG) (r=-0.42, P=0.036) were all significant negative correlation with TMT-B.Conclusions We identified cerebral blood flow altered in the contralesional hemisphere in the subcortical stroke patients with well-recovery global motor function. Moreover, increased CBF were correlated with cognitive functional may represent a compensatory reorganization for the cognitive functional decline of subcortical stroke patients.
[Keywords] stroke;functional magnetic resonance imaging;cerebral blood flow;cognitive function;arterial spin labeling

MIAO Peifang1   WANG Caihong1   WEI Ying1   WU Luobing1   WANG Yingying1   GUO Yafei2   LI Peng3   CHENG Jingliang1*  

1 Department of MRI, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China

2 Department of Radiology, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China

3 Department of Radiology, Henan Cancer Hospital, Zhengzhou 450000, China

Cheng JL, E-mail: cjr.chjl@vip.163.com

Conflicts of interest   None.

ACKNOWLEDGENTS This work was part of National Natural Science Foundation of China (No.81601467).
Received  2020-09-29
Accepted  2021-01-11
DOI: 10.12015/issn.1674-8034.2021.02.001
Cite this article as: Miao PF, Wang CH, Wei Y, et al. 3D-ASL assessment of cerebral blood flow changes in chronic stroke patients[J]. Chin J Magn Reson Imaging, 2021, 12(2): 1-5. DOI:10.12015/issn.1674-8034.2021.02.001.

1
Wang Y, Li Z, Zhao X, et al. Stroke care quality in China: Substantial improvement, and a huge challenge and opportunity[J]. Int J Stroke, 2017, 12(3): 229-235. DOI: 10.1177/1747493017694392.
2
Krishnamurthi RV, Feigin VL, Forouzanfar MH, et al. Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990-2010: findings from the global burden of disease study 2010[J]. Lancet Glob Health, 2013, 1(5): e259-e281. DOI: 10.1016/S2214-109X(13)70089-5.
3
Detre JA, Rao H, Wang DJ, et al. Applications of arterial spin labeled MRI in the brain[J]. J Magn Reson Imaging, 2012, 35(5): 1026-1037. DOI: 10.1002/jmri.23581.
4
Aslan S, Lu H. On the sensitivity of ASL MRI in detecting regional differences in cerebral blood flow[J]. Magn Reson Imaging, 2010, 28(7): 928-935. DOI: 10.1016/j.mri.2010.03.037.
5
Nam KW, Kim CK, Ko SB, et al. Regional arterial spin labeling perfusion defect is associated with early ischemic recurrence in patients with a transient ischemic attack[J]. Stroke, 2020, 51(1): 186-192. DOI: 10.1161/STROKEAHA.119.026556.
6
Lou X, Ma X, Liebeskind DS, et al. Collateral perfusion using arterial spin labeling in symptomatic versus asymptomatic middle cerebral artery stenosis[J]. J Cereb Blood Flow Metab, 2019, 39(1): 108-117. DOI: 10.1177/0271678X17725212.
7
Falk Delgado A, De Luca F, van Westen D, et al. Arterial spin labeling MR imaging for differentiation between high- and low-grade glioma-a meta-analysis[J]. Neuro Oncol, 2018, 20(11): 1450-1461. DOI: 10.1093/neuonc/noy095.
8
Chai C, Zhang M, Wang H, et al. Increased cerebral blood flow is correlated with neurocognitive impairment in long-term hemodialysis patients: an arterial spin labeling MRI study[J]. Brain Imaging Behav, DOI: . DOI: 10.1007/s11682-020-00377-5. DOI: .
9
Bokkers RP, Hernandez DA, Merino JG, et al. Whole-brain arterial spin labeling perfusion MRI in patients with acute stroke[J]. Stroke, 2012, 43(5): 1290-1294. DOI: 10.1161/STROKEAHA.110.589234.
10
Cassidy JM, Cramer SC. Spontaneous and therapeutic-induced mechanisms of functional recovery after stroke[J]. Transl Stroke Res, 2017, 8(1): 33-46. DOI: 10.1007/s12975-016-0467-5.
11
Grefkes C, Ward NS. Cortical reorganization after stroke: how much and how functional?[J]. Neuroscientist, 2014, 20(1): 56-70. DOI: 10.1177/1073858413491147
12
Wang C, Miao P, Liu J, et al. Cerebral blood flow features in chronic subcortical stroke: Lesion location-dependent study[J]. Brain Res, 2019, 1706: 177-183. DOI: 10.1016/j.brainres.2018.11.009.
13
Brumm KP, Perthen JE, Liu TT, et al. An arterial spin labeling investigation of cerebral blood flow deficits in chronic stroke survivors[J]. Neuroimage, 2010, 51(3): 995-1005. DOI: 10.1016/j.neuroimage.2010.03.008.
14
Sadato N, Ibañez V, Deiber MP, et al. Frequency-dependent changes of regional cerebral blood flow during finger movements[J]. J Cereb Blood Flow Metab, 1996, 16(1): 23-33. DOI: 10.1097/00004647-199601000-00003.
15
Siegel JS, Snyder AZ, Ramsey L, et al. The effects of hemodynamic lag on functional connectivity and behavior after stroke[J]. J Cereb Blood Flow Metab, 2016, 36(12): 2162-2176. DOI: 10.1177/0271678X15614846.
16
Wiest R, Abela E, Missimer J, et al. Interhemispheric cerebral blood flow balance during recovery of motor hand function after ischemic stroke--a longitudinal MRI study using arterial spin labeling perfusion[J]. PLoS One, 2014, 9(9): e106327. DOI: 10.1371/journal.pone.0106327.
17
Divya KP, Menon RN, Varma RP, et al. Post-stroke cognitive impairment-A cross-sectional comparison study between mild cognitive impairment of vascular and non-vascular etiology[J]. J Neurol Sci, 2017, 372: 356-362. DOI: 10.1016/j.jns.2016.10.031.
18
Delavaran H, Jönsson AC, Lövkvist H, et al. Cognitive function in stroke survivors: A 10-year follow-up study[J]. Acta Neurol Scand, 2017, 136(3): 187-194. DOI: 10.1111/ane.12709.
19
Zhao Y, Lambon Ralph MA, Halai AD. Relating resting-state hemodynamic changes to the variable language profiles in post-stroke aphasia[J]. Neuroimage Clin, 2018, 20: 611-619. DOI: 10.1016/j.nicl.2018.08.022.
20
MacIntosh BJ, Shirzadi Z, Atwi S, et al. Metabolic and vascular risk factors are associated with reduced cerebral blood flow and poorer midlife memory performance[J]. Hum Brain Mapp, 2020, 41(4): 855-864. DOI: 10.1002/hbm.24844.
21
Hillis AE, Kane A, Barker P, et al. Neural substrates of the cognitive processes underlying reading: evidence from magnetic resonance perfusion imaging in hyperacute stroke[J]. Aphasiology, 2001, 15(10-11): 919-931. DOI: 10.1080/02687040143000294.
22
Boukrina O, Barrett AM, Graves WW. Cerebral perfusion of the left reading network predicts recovery of reading in subacute to chronic stroke[J]. Hum Brain Mapp, 2019, 40(18): 5301-5314. DOI: 10.1002/hbm.24773.
23
Cai J, Ji Q, Xin R, et al. Contralesional cortical structural reorganization contributes to motor recovery after sub-cortical stroke: A longitudinal voxel-based morphometry study[J]. Front Hum Neurosci, 2016, 10: 393. DOI: 10.3389/fnhum.2016.00393.
24
Cheng B, Schulz R, Bönstrup M, et al. Structural plasticity of remote cortical brain regions is determined by connectivity to the primary lesion in subcortical stroke[J]. J Cereb Blood Flow Metab, 2015, 35(9): 1507-1514. DOI: 10.1038/jcbfm.2015.74.
25
Tombaugh TN. Trail making test A and B: normative data stratified by age and education[J]. Arch Clin Neuro Psychol, 2004, 19(2): 203-214. DOI: 10.1016/S0887-6177(03)00039-8.
26
Kubo M, Shoshi C, Kitawaki T, et al. Increase in prefrontal cortex blood flow during the computer version trail making test[J]. Neuro Psychobiology, 2008, 58(3-4): 200-210. DOI: 10.1159/000201717.

PREV Progress in magnetic resonance imaging application of acute muscle strain
NEXT Application of high-resolution magnetic resonance vessel wall imaging in evaluation of intracranial arterial dissection according to stage
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn