Share:
Share this content in WeChat
X
REVIEW
The progress in neuroimaging of ischemic stroke
LU Yujie  LI Wenmei  LIANG Zhijian 

Cite this article as: Lu YJ, Li WM, Liang ZJ. The progress in neuroimaging of ischemic stroke[J]. Chin J Magn Reson Imaging, 2021, 12(2): 91-93, 97. DOI:10.12015/issn.1674-8034.2021.02.022.


[Abstract] When a man suffers from stroke, some issues must be addressed, including stroke pathogenesis, pathophysiology, and evaluation of recovery potential. Advances in clinical technology have allowed for better monitoring and personalized therapy in different stages of stroke, including prevention, acute stroke and post-stroke rehabilitation. The development of neuroimaging can quantify tissue function and healthy status, so as to triage patients for preventative treatment and optimize their therapies. This review will focus on the progress of advanced MRI neuroimaging methods in ischemic stroke.
[Keywords] neuroimaging;ischemic stroke;diffusion spectrum imaging;functional magnetic resonance imaging;blood oxygen level-dependent

LU Yujie1   LI Wenmei1*   LIANG Zhijian2  

1 Department of Radiology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530022, China

2 Department of Neurology, the First Affiliated Hospital of Guangxi Medical University, Nanning 530022, China

Li WM, E-mail: liwenmei@162.com

Conflicts of interest   None.

ACKNOWLEDGMENTS This work was part of National Key Research and Development Plan (No. 2018YFC1311305).
Received  2020-10-13
Accepted  2021-01-12
DOI: 10.12015/issn.1674-8034.2021.02.022
Cite this article as: Lu YJ, Li WM, Liang ZJ. The progress in neuroimaging of ischemic stroke[J]. Chin J Magn Reson Imaging, 2021, 12(2): 91-93, 97. DOI:10.12015/issn.1674-8034.2021.02.022.

1
Donahue MJ, Achten E, Cogswell PM, et al. Consensus statement on current and emerging methods for the diagnosis and evaluation of cerebrovascular disease[J]. J Cereb Blood Flow Metab, 2018, 38(9): 1391-1417. DOI: 10.1177/0271678X17721830.
2
Guggisberg AG, Koch PJ, Hummel FC, et al. Brain networks and their relevance for stroke rehabilitation[J]. Clin Neurophysiol, 2019, 130(7): 1098-1124. DOI: 10.1016/j.clinph.2019.04.004.
3
Weber RA, Chan CH, Nie X, et al. Sensitivity of diffusion MRI to perilesional reactive astrogliosis in focal ischemia[J]. NMR Biomed, 2017, 30(7): 10. DOI: 10.1002/nbm.3717.
4
Stam CJ, van Straaten EC. The organization of physiological brain networks[J]. Clin Neurophysiol, 2012, 123(6): 1067-1087. DOI: 10.1016/j.clinph.2012.01.011.
5
De Vico Fallani F, Richiardi J, Chavez M, et al. Graph analysis of functional brain networks: practical issues in translational neuroscience[J]. Philos Trans R Soc Lond B Biol Sci, 2014, 369(1653): 20130521. DOI: 10.1098/rstb.2013.0521.
6
Puig J, Blasco G, Schlaug G, et al. Diffusion tensor imaging as a prognostic biomarker for motor recovery and rehabilitation after stroke[J]. Neuroradiology, 2017, 59(4): 343-351. DOI: 10.1007/s00234-017-1816-0.
7
Forkel SJ, Thiebaut de Schotten M, Dell'Acqua F, et al. Anatomical predictors of aphasia recovery: a tractography study of bilateral perisylvian language networks[J]. Brain, 2014, 137(Pt 7): 2027-2039. DOI: 10.1093/brain/awu113.
8
Lunven M, Thiebaut De Schotten M, Bourlon C, et al. White matter lesional predictors of chronic visual neglect: a longitudinal study[J]. Brain, 2015, 138(Pt 3): 746-760. DOI: 10.1093/brain/awu389.
9
Chen H, Jiang L, Zhang H, et al. Corticospinal tract changes in acute brainstem ischemic stroke patients: A diffusion kurtosis imaging study[J]. Neurol India, 2018, 66(3): 726-732. DOI: 10.4103/0028-3886.232281.
10
Lin DJ, Cloutier AM, Erler KS, et al. Corticospinal tract injury estimated from acute stroke imaging predicts upper extremity motor recovery after stroke[J]. Stroke, 2019, 50(12): 3569-3577. DOI: 10.1161/STROKEAHA.119.025898.
11
Ruber T, Schlaug G, Lindenberg R. Compensatory role of the cortico-rubro-spinal tract in motor recovery after stroke[J]. Neurology, 2012, 79(6): 515-522. DOI: 10.1212/WNL.0b013e31826356e8.
12
Schulz R, Park E, Lee J, et al. Synergistic but independent: The role of corticospinal and alternate motor fibers for residual motor output after stroke[J]. Neuroimage Clin, 2017, 15: 118-124. DOI: 10.1016/j.nicl.2017.04.016.
13
Schulz R, Koch P, Zimerman M, et al. Parietofrontal motor pathways and their association with motor function after stroke[J]. Brain, 2015, 138(Pt 7): 1949-1960. DOI: 10.1093/brain/awv100.
14
Di Pino G, Pellegrino G, Assenza G, et al. Modulation of brain plasticity in stroke: a novel model for neurorehabilitation[J]. Nat Rev Neurol, 2014, 10(10): 597-608. DOI: 10.1038/nrneurol.2014.162.
15
Basser PJ, Jones DK. Diffusion-tensor MRI: theory, experimental design and data analysis- a technical review[J]. NMR Biomed, 2002, 15(7-8): 456-467. DOI: 10.1002/nbm.783.
16
Koch P, Schulz R, Hummel FC. Structural connectivity analyses in motor recovery research after stroke[J]. Ann Clin Transl Neurol, 2016, 3(3): 233-244. DOI: 10.1002/acn3.278.
17
Lotan E, Tavor I, Barazany D, et al. Selective atrophy of the connected deepest cortical layers following small subcortical infarct[J]. Neurology, 2019, 92(6): e567-e575. DOI: 10.1212/WNL.0000000000006884.
18
Takenobu Y, Hayashi T, Moriwaki H, et al. Motor recovery and microstructural change in rubro-spinal tract in subcortical stroke[J]. Neuroimage Clin, 2014, 4: 201-208. DOI: 10.1016/j.nicl.2013.12.003.
19
Jiang L, Xu H, Yu C. Brain connectivity plasticity in the motor network after ischemic stroke[J]. Neural Plast, 2013, 2013: 924192. DOI: 10.1155/2013/924192.
20
Aben HP, Biessels GJ, Weaver NA, et al. Extent to which network hubs are affected by ischemic stroke predicts cognitive recovery[J]. Stroke, 2019, 50(10): 2768-2774. DOI: 10.1161/STROKEAHA.119.025637.
21
Zhang H, Schneider T, Wheeler-Kingshott CA, et al. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain[J]. Neuroimage, 2012, 61(4): 1000-1016. DOI: 10.1016/j.neuroimage.2012.03.072.
22
Schilling KG, Janve V, Gao Y, et al. Histological validation of diffusion MRI fiber orientation distributions and dispersion[J]. Neuroimage, 2018, 165: 200-221. DOI: 10.1016/j.neuroimage.2017.10.046.
23
Wang N, Zhang J, Cofer G, et al. Neurite orientation dispersion and density imaging of mouse brain microstructure[J]. Brain Struct Funct, 2019, 224(5): 1797-1813. DOI: 10.1007/s00429-019-01877-x.
24
Jensen JH, Helpern JA, Ramani A, et al. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging[J]. Magn Reson Med, 2005, 53(6): 1432-1440. DOI: 10.1002/mrm.20508.
25
Spampinato MV, Chan C, Jensen JH, et al. Diffusional kurtosis imaging and motor outcome in acute ischemic stroke[J]. AJNR Am J Neuroradiol, 2017, 38(7): 1328-1334. DOI: 10.3174/ajnr.A5180.
26
Zhu LH, Zhang ZP, Wang FN, et al. Diffusion kurtosis imaging of microstructural changes in brain tissue affected by acute ischemic stroke in different locations[J]. Neural Regen Res, 2019, 14(2): 272-279. DOI: 10.4103/1673-5374.244791.
27
Wu Y, Kim J, Chan ST, et al. Comparison of image sensitivity between conventional tensor-based and fast diffusion kurtosis imaging protocols in a rodent model of acute ischemic stroke[J]. NMR Biomed, 2016, 29(5): 625-630. DOI: 10.1002/nbm.3506.
28
Weber RA, Hui ES, Jensen JH, et al. Diffusional kurtosis and diffusion tensor imaging reveal different time-sensitive stroke-induced microstructural changes[J]. Stroke, 2015, 46(2): 545-550. DOI: 10.1161/STROKEAHA.114.006782.
29
Yin J, Sun H, Wang Z, et al. Diffusion kurtosis imaging of acute infarction: Comparison with routine diffusion and follow-up MR imaging[J]. Radiology, 2018, 287(2): 651-657. DOI: 10.1148/radiol.2017170553.
30
Cheung JS, Wang E, Lo EH, et al. Stratification of heterogeneous diffusion MRI ischemic lesion with kurtosis imaging: evaluation of mean diffusion and kurtosis MRI mismatch in an animal model of transient focal ischemia[J]. Stroke, 2012, 43(8): 2252-2254. DOI: 10.1161/STROKEAHA.112.661926.
31
Andica C, Kamagata K, Hatano T, et al. MR biomarkers of degenerative brain disorders derived from diffusion imaging[J]. J Magn Reson Imaging, 2020, 52(6): 1620-1636. DOI: 10.1002/jmri.27019.
32
Wedeen VJ, Wang RP, Schmahmann JD, et al. Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers[J]. Neuroimage, 2008, 41(4): 1267-1277. DOI: 10.1016/j.neuroimage.2008.03.036.
33
Tuch DS. Q-ball imaging[J]. Magn Reson Med, 2004, 52(6): 1358-1372. DOI: 10.1002/mrm.20279.
34
Yeh FC, Wedeen VJ, Tseng WY. Generalized q-sampling imaging[J]. IEEE Trans Med Imaging, 2010, 29(9): 1626-1635. DOI: 10.1109/TMI.2010.2045126.
35
Ozarslan E, Koay CG, Shepherd TM, et al. Mean apparent propagator (MAP) MRI: a novel diffusion imaging method for mapping tissue microstructure[J]. Neuroimage, 2013, 78: 16-32. DOI: 10.1016/j.neuroimage.2013.04.016.
36
Fick RHJ, Wassermann D, Caruyer E, et al. MAPL: Tissue microstructure estimation using Laplacian-regularized MAP-MRI and its application to HCP data[J]. Neuroimage, 2016, 134: 365-385. DOI: 10.1016/j.neuroimage.2016.03.046.
37
Avram AV, Sarlls JE, Barnett AS, et al. Clinical feasibility of using mean apparent propagator (MAP) MRI to characterize brain tissue microstructure[J]. Neuroimage, 2016, 127: 422-434. DOI: 10.1016/j.neuroimage.2015.11.027.
38
Yeh FC, Tang PF, Tseng WY. Diffusion MRI connectometry automatically reveals affected fiber pathways in individuals with chronic stroke[J]. Neuroimage Clin, 2013, 2: 912-921. DOI: 10.1016/j.nicl.2013.06.014.
39
Boscolo Galazzo I, Brusini L, Obertino S, et al. On the viability of diffusion MRI-based microstructural biomarkers in ischemic stroke[J]. Front Neurosci, 2018, 12: 92. DOI: 10.3389/fnins.2018.00092.
40
Brusini L, Obertino S, Galazzo IB, et al. Ensemble average propagator-based detection of microstructural alterations after stroke[J]. Int J Comput Assist Radiol Surg, 2016, 11(9): 1585-1597. DOI: 10.1007/s11548-016-1442-z.
41
Grefkes C, Fink GR. Connectivity-based approaches in stroke and recovery of function[J]. Lancet Neurol, 2014, 13(2): 206-216. DOI: 10.1016/S1474-4422(13)70264-3.
42
Lake EM, Bazzigaluppi P, Stefanovic B. Functional magnetic resonance imaging in chronic ischaemic stroke[J]. Philos Trans R Soc Lond B Biol Sci, 2016, 371(1705): 20150353. DOI: 10.1098/rstb.2015.0353.
43
van Meer MP, Otte WM, van der Marel K, et al. Extent of bilateral neuronal network reorganization and functional recovery in relation to stroke severity[J]. J Neurosci, 2012, 32(13): 4495-4507. DOI: 10.1523/JNEUROSCI.3662-11.2012.
44
Carter AR, Patel KR, Astafiev SV, et al. Upstream dysfunction of somatomotor functional connectivity after corticospinal damage in stroke[J]. Neurorehabil Neural Repair, 2012, 26(1): 7-19. DOI: 10.1177/1545968311411054.
45
Puig J, Blasco G, Alberich-Bayarri A, et al. Resting-state functional connectivity magnetic resonance imaging and outcome after acute stroke[J]. Stroke, 2018, 49(10): 2353-2360. DOI: 10.1161/STROKEAHA.118.021319.
46
He BJ, Snyder AZ, Vincent JL, et al. Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect[J]. Neuron, 2007, 53(6): 905-918. DOI: 10.1016/j.neuron.2007.02.013.
47
van Meer MP, van der Marel K, Wang K, et al. Recovery of sensorimotor function after experimental stroke correlates with restoration of resting-state interhemispheric functional connectivity[J]. J Neurosci, 2010, 30(11): 3964-3972. DOI: 10.1523/JNEUROSCI.5709-09.2010.
48
Siegel JS, Ramsey LE, Snyder AZ, et al. Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke[J]. Proc Natl Acad Sci U S A, 2016, 113(30): E4367-4376. DOI: 10.1073/pnas.1521083113.
49
Bonakdarpour B, Beeson PM, DeMarco AT, et al. Variability in blood oxygen level dependent (BOLD) signal in patients with stroke-induced and primary progressive aphasia[J]. Neuroimage Clin, 2015, 8: 87-94. DOI: 10.1016/j.nicl.2015.03.014.

PREV Research progress of radiomics in predicting the genotyping of gliomas
NEXT Progresses of structural and functional MRI in predicting post-concussion syndrome
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn