Share:
Share this content in WeChat
X
Clinical Article
Clinical research of NODDI technology in deep brain nucleus of Parkinson's disease
HUANG Xiaopan  HAN Hongyu  WANG Min  MA Donghui  LI Peishan  WANG Hong 

Cite this article as: Huang XP, Han HY, Wang M, et al. Clinical research of NODDI technology in deep brain nucleus of Parkinson's disease[J]. Chin J Magn Reson Imaging, 2021, 12(3): 6-9, 19. DOI:10.12015/issn.1674-8034.2021.03.002.


[Abstract] Objective To investigate microstructural changes of gray matter nucleus in people with Parkinson's Disease (PD) by neurite orientation dispersion and density imaging (NODDI). Materials andMethods Thirty-six PD patients and 26 healty volunteers underwent MRI and were divided into the case group and the control group, NODDI images were analyzed and processed. Intracellular volume fraction (Vic) and orientation dispersion index (ODI) from the case group were separately compared with those from the control group, and receiver operating characteristic curve (ROC) evaluated the diagnostic efficiency of different nucleus.Results The Vic values of left substantia nigra (P<0.001), thalamus (P=0.003), right caudate nucleus head (P=0.002), putamen (P<0.001), globus pallidus (P<0.001), substantia nigra (P<0.001), red nucleus (P<0.001) and thalamus (P=0.006) in PD patients were significantly different from those in the control group. Compared with the control group, the ODI values of left substantia nigra (P<0.001), right caudate nucleus head (P=0.038), putamen (P=0.001), globus pallidus (P=0.023) substantia nigra (P<0.001) and red nucleus (P=0.023) in PD patients showed significantly difference. Meanwhile, the ROC curve showed that area under curve (AUC) of the Vic values for PD's diagnosis were respectively 0.861, 0.788, 0.852, 0.843 in right substantia nigra, red nucleus, globus pallidus and putamen. In addition, the AUC of the combined diagnosis of substantia nigra and globus pallidus, substantia nigra and putamen were separately 0.925,0.921.Conclusion NODDI can qualitatively distinguish between PD patients and healthy volunteers, and quantitatively analyze microstructural changes of deep brain nucleus. And the joint diagnosis of nucleus can obtain higher value, which is helpful for PD's clinical diagnosis.
[Keywords] neurite orientation dispersion and density imaging;nucleus;parkinson's disease;magnetic resonance imaging;substantia nigra striatum

HUANG Xiaopan   HAN Hongyu   WANG Min   MA Donghui   LI Peishan   WANG Hong*  

Department of Radiology, Second Affiliated Hospital of Xinjiang Medical Univer sity, Urumqi 830063, China

Wang H, E-mail: wangh_xj@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS  This work was part of Natural Science Foundation of Xinjiang Uygur Autonomous Region No. 2019D01C227
Received  2020-10-06
Accepted  2021-01-21
DOI: 10.12015/issn.1674-8034.2021.03.002
Cite this article as: Huang XP, Han HY, Wang M, et al. Clinical research of NODDI technology in deep brain nucleus of Parkinson's disease[J]. Chin J Magn Reson Imaging, 2021, 12(3): 6-9, 19. DOI:10.12015/issn.1674-8034.2021.03.002.

1
Kalia LV, Lang AE. Parkinson's disease. Lancet, 2015, 386: 896-912. DOI: 10.1016/S0140-6736(14)61393-3
2
Zhang Y, Burock MA. Diffusion tensor imaging in parkinson's disease and parkinsonian syndrome: a systematic review. Front Neurol, 2020, 11: 531993. DOI: 10.3389/fneur.2020.531993
3
Mazal AT, Ashikyan O, Cheng J, et al. Diffusion-weighted imaging and diffusion tensor imaging as adjuncts to conventional MRI for the diagnosis and management of peripheral nerve sheath tumors: current perspectives and future directions. Eur Radiol, 2019, 29(8): 4123-4132. DOI: 10.1007/s00330-018-5838-8
4
Liu Y, Wang H, Ma JX. MR the value of diffusion tensor diffusion kurtosis imaging in the diagnosis of Parkinson's disease. J Med Imaging, 2020, 30 (3): 358-362. DOI: XYXZ.0.2020-03-005
5
Knossalla F, Kohl Z, Winkler J, et al. High-resolution diffusion tensor-imaging indicates asymmetric microstructural disorganization within substantia nigra in early Parkinson's disease. J Clin Neurosci, 2018, 50: 199-202. DOI: 10.1016/j.jocn.2018.01.023
6
Deng X, Wang L, Yang T, et al. A meta-analysis of diffusion tensor imaging of substantia nigra in patients with Parkinson's disease. Sci Rep, 2018, 8(1):2941. DOI: 10.1038/s41598-018-20076-y
7
Lenfeldt N, Larsson A, Nyberg L, et al. Fractional anisotropy in the substantia nigra in Parkinson's disease: a complex picture. Eur J Neurol, 2015, 22(10): 1408-1414. DOI: 10.1111/ene.12760
8
Pelizzari L, Lagana MM, Di Tella S, et al. Combined assessment of diffusion parameters and cerebral blood flow within basal ganglia in early Parkinson's disease. Front Aging Neurosci, 2019, 11: 134. DOI: 10.3389/fnagi.2019.00134
9
Joshi N, Rolheiser TM, Fisk JD, et al. Lateralized microstructural changes in early-stage Parkinson's disease in anterior olfactory structures, but not in substantia nigra. J Neurol, 2017, 264(7): 1497-1505. DOI: 10.1007/s00415-017-8555-3
10
Zhang H, Schneider T, Wheeler-Kingshott CA, et al. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage, 2012, 61(4): 1000-1016. DOI: 10.1016/j.neuroimage.2012.03.072
11
Yasuno F, Makinodan M, Takahashi M, et al. Microstructural anomalies evaluated by neurite orientation dispersion and density imaging are related to deficits in facial emotional recognition via perceptual-binding difficulties in autism spectrum disorder. Autism Res, 2020, 13(5): 729-740. DOI: 10.1002/aur.2280
12
Crombe A, Planche V, Raffard G, et al. Deciphering the microstructure of hippocampal subfields with in vivo DTI and NODDI: applications to experimental multiple sclerosis. Neuroimage, 2018, 172: 357-368. DOI: 10.1016/j.neuroimage.2018.01.061
13
Wang Z, Zhang S, Liu C, et al. A study of neurite orientation dispersion and density imaging in ischemic stroke. Magn Reson Imaging, 2019, 57: 28-33. DOI: 10.1016/j.mri.2018.10.018
14
Wichmann T, Dostrovsky JO. Pathological basal ganglia activity in movement disorders. Neuroscience, 2011, 198: 232-244. DOI: 10.1016/j.neuroscience.2011.06.048
15
Bingbing G, Yujing Z, Yanwei M, et al. Diffusion kurtosis imaging of microstructural changes in gray matter nucleus in parkinson disease. Front Neurol, 2020, 11: 252. DOI: 10.3389/fneur.2020.00252
16
Zhang Y, Wu I, Tosun D, et al. Progression of regional microstructural degeneration in Parkinson's disease: a multicenter diffusion tensor imaging study. PloS one, 2016, 11(10): e165540. DOI: 10.1371/journal.pone.0165540.
17
Liu WX, Zhang XB, Lu P, et al. MR neurite orientation dispersion and density imaging of substantia nigra and putamen in Parkinson's disease. Imaging Diagn Interv Radiol, 2020, 29(2): 83-88. DOI: 10.3969/J.ISSN.1005-8001.
18
Lanciego JL, Luquin N, Obeso JA. Functional neuroanatomy of the basal ganglia. Cold Spring Harb Perspect Med, 2012, 2(12): a009621. DOI: 10.1101/cshperspect.a009621.
19
Kamagata K, Hatano T, Okuzumi A, et al. Neurite orientation dispersion and density imaging in the substantia nigra in idiopathic Parkinson disease. Eur Radiol, 2016, 26(8): 2567-2577. DOI: 10.1007/s00330-015-4066-8.
20
Kamagata K, Hatano T, Aoki S. What is NODDI and what is its role in Parkinson's assessment? Expert Rev Neurother, 2016, 16(3): 241-243. DOI: 10.1586/14737175.2016.1142876.
21
Weingarten CP, Sundman MH, Hickey P, et al. Neuroimaging of Parkinson's disease: Expanding views. Neurosci Biobehav Rev, 2015, 59: 16-52. DOI: 10.1016/j.neubiorev.2015.09.007.
22
Jellinger KA. The pathomechanisms underlying Parkinson's disease. Expert Rev Neurother, 2014, 14(2): 199-215. DOI: 10.1586/14737175.2014.877842.

PREV Clinical and MRI analysis of hepatic and cerebral hepatolenticular degeneration
NEXT Preliminary study on comparing the ReHo features of resting-state functional MRI between the treatment-resistant and non-treatment-resistant depression
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn