Share:
Share this content in WeChat
X
Review
Advances in imaging differentiation of pseudoprogression and recurrence of brain gliomas after treatment
BAO Shasha  LIU Yifan  LUO Yueyuan  GUO Xiaobin  LI Zhilin  YANG Jun  LIAO Chengde 

Cite this article as: Bao SS, Liu YF, Luo YY, et al. Advances in imaging differentiation of pseudoprogression and recurrence of brain gliomas after treatment[J]. Chin J Magn Reson Imaging, 2021, 12(3): 85-88. DOI:10.12015/issn.1674-8034.2021.03.020.


[Abstract] Glioma, which originates from neuroepithelial cells, is the most common primary tumor in the brain. Its treatment is surgical resection and subsequent simultaneous radiotherapy and chemotherapy, but up to 30% of patients will develop new enhanced lesions in magnetic resonance imaging. This may not be the early tumor progression, but the pseudo progression caused by radiotherapy and chemotherapy Pseudoprogression, due to mild lesions and good prognosis, only needs symptomatic treatment, while tumor recurrence requires re-surgical treatment or other treatment options. If the tumor recurrence and false progression are misdiagnosed, it is likely to delay the best treatment time for patients, and eventually lead to ineffective diagnosis and treatment. Therefore, the correct distinction between recurrence and pseudoprogression of glioma patients is very important for the choice of clinical treatment. It is impossible for conventional magnetic resonance imaging to reliably distinguish PSP from EP. At present, some more advanced imaging methods are expected to identify them accurately.
[Keywords] gliomas;recurrence;pseudoprogression;magnetic resonance imaging;differential diagnosis

BAO Shasha   LIU Yifan   LUO Yueyuan   GUO Xiaobin   LI Zhilin   YANG Jun   LIAO Chengde*  

Yunnan Cancer Hospital (the Third Affiliated Hospital of Kunming Medical University), Kunming 650000, China

Liao CD, E-mail: 846681160@qq.com

Conflicts of interest   None.

ACKNOWLEDGMENTS  Supported by the National Natural Science Foundation of China No.81760316, 82060313 Scientific Research Grant Project of the Key Laboratory of Drug Dependence and Abstinence of the National Health Commission No. 2020DAMARB-005 Yunnan Provincial Health Commissionsupported by the Medical Discipline Leader Project No. D-2018009
Received  2020-11-05
Accepted  2021-01-21
DOI: 10.12015/issn.1674-8034.2021.03.020
Cite this article as: Bao SS, Liu YF, Luo YY, et al. Advances in imaging differentiation of pseudoprogression and recurrence of brain gliomas after treatment[J]. Chin J Magn Reson Imaging, 2021, 12(3): 85-88. DOI:10.12015/issn.1674-8034.2021.03.020.

1
Wick W, Chinot OL, Bendszus M, et al. Evaluation of pseudoprogression rates and tumor progression patterns in a phase III trial of bevacizumab plus radiotherapy/temozolomide for newly diagnosed glioblastoma. Neurooncology, 2016, 18(10): 1434-1441. DOI: 10.1093/neuonc/now091
2
Yang YL, Huang B. Application of APT in differential diagnosis of pseudoprogression and recurrence of glioma. Int J Med Radiol, 2019, 42(5): 535-358.
3
Young RM, Jamshidi A, Davis G, et al. Current trends in the surgical management and treatment of adult glioblastoma. Ann Transl Med, 2015, 3(9): 121. DOI: 10.3978/j.issn.2305-5839.2015.05.10
4
Ma B, Blakeley JO, Hong X, et al. Applying amide proton transfer-weighted MRI to distinguish pseudoprogression from true progression in malignant gliomas. JMRI, 2016, 44(2): 456-462. DOI: 10.1002/jmri.25159
5
Li Z, Wang Y, Yu J, et al. Deep learning based radiomics (DLR) and its usage in noninvasive IDH1 prediction for low grade glioma. Sci Rep, 2017, 7(1): 5467. DOI: 10.1038/s41598-017-05848-2
6
Shu CK, Quan GM, Yuan T, et al. Progress in evaluation of new DWI techniques after treatment of high-grade gliomas. Int J Med Radiol, 2016, 39(5): 500-504, 22.
7
Liu YQ. Functional magnetic resonance imaging in high-grade glioma efficacy monitoring research progress. Xi'an: The 12th national conference on abdominal ultrasonic medicine of the chinese society of ultrasonic medical engineering, 2018.
8
Bronk JK, Guha-Thakurta N, Allen PK, et al. Analysis of pseudoprogression after proton or photon therapy of 99 patients with low grade and anaplastic glioma. Clin Transl Radiat Oncol, 2018, 9: 30-34. DOI: 10.1016/j.ctro.2018.01.002
9
Dworkin M, Mehan W, Niemierko A, et al. Increase of pseudoprogression and other treatment related effects in low-grade glioma patients treated with proton radiation and temozolomide. J Neuro-oncol, 2019, 142(1): 69-77. DOI: 10.1007/s11060-018-03063-1
10
Pan F, Wu X, Su ZZ, et al. The value of 3D-ASL combined with DWI in the differential diagnosis of postoperative recurrence and pseudoprogression of gliomas. J Clin Radiol, 2018, 37(6): 904-908.
11
Sha L, Fan GG, Cao Q, et al. Combined application of PWI and DWI in differential diagnosis of glioma recurrence and radiation injury. Chin J Clin Med Imaging, 2013, 24(12): 841-845.
12
Patel P, Baradaran H, Delgado D, et al. MR perfusion-weighted imaging in the evaluation of high-grade gliomas after treatment: a systematic review and meta-analysis. Neuro Oncol, 2017, 19(1):118-27. DOI: 10.1093/neuonc/now148
13
Amukotuwa SA, Yu C, Zaharchuk G. 3D Pseudocontinuous arterial spin labeling in routine clinical practice: A review of clinically significant artifacts. [J] Journal of magnetic resonance imaging: JMRI. 2016, 43(1):11-27. DOI: 10.1002/jmri.24873
14
Jovanovic M, Radenkovic S, Stosic-Opincal T, et al. Differentiation between progression and pseudoprogresion by arterial spin labeling MRI in patients with glioblastoma multiforme. J BUON, 2017, 22(4): 1061-1067.
15
Ellingson BM, Malkin MG, Rand SD, et al. Validation of functional diffusion maps (fDMs) as a biomarker for human glioma cellularity. JMRI, 2010, 31(3): 538-548. DOI: 10.1002/jmri.22068
16
Qin L, Li X, Stroiney A, et al. Advanced MRI assessment to predict benefit of anti-programmed cell death 1 protein immunotherapy response in patients with recurrent glioblastoma. Neuroradiology, 2017, 59(2): 135-145. DOI: 10.1007/s00234-016-1769-8
17
Aquino D, Gioppo A, Finocchiaro G, et al. MRI in glioma immunotherapy: evidence, pitfalls, and perspectives. J Immunol Res, 2017, 2017:5813951. DOI: 10.1155/2017/5813951
18
Zhang H, Ma L, Shu C, et al. Diagnostic accuracy of diffusion MRI with quantitative ADC measurements in differentiating glioma recurrence from radiation necrosis. J Neurological sci, 2015, 351(1-2): 65-71. DOI: 10.1016/j.jns.2015.02.038
19
Yamasaki F, Sugiyama K, Ohtaki M, et al. Glioblastoma treated with postoperative radio-chemotherapy: prognostic value of apparent diffusion coefficient at MR imaging. Eur J Radiol, 2010, 73(3): 532-537. DOI: 10.1016/j.ejrad.2009.01.013
20
LaViolette PS, Mickevicius NJ, Cochran EJ, et al. Precise ex vivo histological validation of heightened cellularity and diffusion-restricted necrosis in regions of dark apparent diffusion coefficient in 7 cases of high-grade glioma. Neuro Oncol, 2014, 16(12): 1599-1606. DOI: 10.1093/neuonc/nou142
21
Qian X, Tan H, Zhang J, et al. Stratification of pseudoprogression and true progression of glioblastoma multiform based on longitudinal diffusion tensor imaging without segmentation. Med Phys, 2016, 43(11): 5889. DOI: 10.1118/1.4963812
22
Wang Q, Zhang H, Zhang J, et al. The diagnostic performance of magnetic resonance spectroscopy in differentiating high-from low-grade gliomas: a systematic review and Meta-analysis. Eur Radiol, 2016, 26(8): 2670-2684. DOI: 10.1007/s00330-015-4046-z
23
Wang S, Martinez-Lage M, Sakai Y, et al. Differentiating tumor progression from pseudoprogression in patients with glioblastomas using diffusion tensor imaging and dynamic susceptibility contrast MRI. AJNR Am J Neuroradiol, 2016, 37(1): 28-36. DOI: 10.3174/ajnr.A4474
24
Hobbs SK, Shi G, Homer R, et al. Magnetic resonance image-guided proteomics of human glioblastoma multiforme. J Magn Reson Imaging, 2003, 18(5): 530-536. DOI: 10.1002/jmri.10395
25
Isobe T, Matsumura A, Anno I, et al. Quantification of cerebral metabolites in glioma patients with proton MR spectroscopy using T2 relaxation time correction. Magn Reson Imaging, 2002, 20(4): 343-349. DOI: 10.1016/s0730-725x(02)00500-3
26
Hu LS, Eschbacher JM, Heiserman JE, et al. Reevaluating the imaging definition of tumor progression: perfusion MRI quantifies recurrent glioblastoma tumor fraction, pseudoprogression, and radiation necrosis to predict survival. Neuro Oncol, 2012, 14(7): 919-930. DOI: 10.1093/neuonc/nos112
27
Yan K, Fu Z, Yang C, et al. Assessing amide proton transfer (APT) MRI contrast origins in 9 L gliosarcoma in the rat brain using proteomic analysis. Mol Imaging and Biol, 2015, 17(4): 479-487. DOI: 10.1007/s11307-015-0828-6
28
Zhang P, Guo Z, Zhang Y, et al. A preliminary quantitative proteomic analysis of glioblastoma pseudoprogression. Proteome Sci, 2015, 13(1): 12. DOI: 10.1186/s12953-015-0066-5
29
Lu YH, Zhao HL, Zhang SY, et al. Multi-voxel proton MR spectroscopy combined with ADC for differential diagnosis of glioma recurrence and radionecrosis. J Med Imaging, 2018, 28(4): 529-532.
30
van Dijken BRJ, van Laar PJ, Holtman GA, et al. Diagnostic accuracy of magnetic resonance imaging techniques for treatment response evaluation in patients with high-grade glioma, a systematic review and meta-analysis. Eur Radiol, 2017, 27(10): 4129-4144. DOI: 10.1007/s00330-017-4789-9
31
Moreau A, Febvey O, Mognetti T, et al. Contribution of different positron emission tomography tracers in glioma management: focus on glioblastoma. Front Oncol, 2019, 9: 1134. DOI: 10.3389/fonc.2019.01134
32
Park JE, Lee JY, Kim HS, et al. Amide proton transfer imaging seems to provide higher diagnostic performance in post-treatment high-grade gliomas than methionine positron emission tomography. Eur Radiol, 2018, 28(8): 3285-3295. DOI: 10.1007/s00330-018-5341-2
33
Kristin Schmitz A, Sorg RV, Stoffels G, et al. Diagnostic impact of additional O-(2-[18F]fluoroethyl)-L-tyrosine (18)F-FET) PET following immunotherapy with dendritic cell vaccination in glioblastoma patients. Br J Neurosurgery, 2019: 1-7. DOI: 10.1080/02688697.2019.1639615
34
Galldiks N, Stoffels G, Filss C, et al. The use of dynamic O-(2-18F-fluoroethyl)-l-tyrosine PET in the diagnosis of patients with progressive and recurrent glioma. Neuro Oncol, 2015, 17(9): 1293-1300. DOI: 10.1093/neuonc/nov088
35
Kertels O, Mihovilovic MI, Linsenmann T, et al. Clinical utility of different approaches for detection of late pseudoprogression in glioblastoma with O-(2-[18F]fluoroethyl)-L-Tyrosine PET. Clin Nuclear Med, 2019, 44(9): 695-701. DOI: 10.1097/rlu.0000000000002652
36
Nicolaj AC. The future has begun in radiogenomics. Radiother Oncol, 2014, 111(2) :165-167.
37
Elshafeey N, Kotrotsou A, Hassan A, et al. Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma. Nat Commun, 2019, 10(1): 3170. DOI: 10.1038/s41467-019-11007-0
38
Jang BS, Jeon SH, Kim IH, et al. Prediction of pseudoprogression versus progression using machine learning algorithm in glioblastoma. Sci Rep, 2018, 8(1): 12516. DOI: 10.1038/s41598-018-31007-2
39
Lotan E, Jain R, Razavian N, et al. State of the Art: Machine Learning Applications in Glioma Imaging. AJR Am J Roentgenol, 2019, 212(1): 26-37. DOI: 0.2214/ajr.18.20218

PREV Intravoxel incoherent motion imaging: research advances in brain tumors
NEXT Application progress of PET-MR imaging in Parkinson's disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn