Share:
Share this content in WeChat
X
Review
Application progress of PET-MR imaging in Parkinson's disease
ZHANG Menghuan  BAI Yan  FENG Qin  WANG Mengke  WANG Meiyun 

Cite this article as: Zhang MH, Bai Y, Feng Q, et al. Application progress of PET-MR imaging in Parkinson's disease[J]. Chin J Magn Reson Imaging, 2021, 12(3): 89-91. DOI:10.12015/issn.1674-8034.2021.03.021.


[Abstract] Parkinson's disease (PD) is a disease involving multiple systems and complicated etiology. Its clinical manifestations vary from person to person, and the progression of the disease varies. However, the reasons for such individual differences are still unclear. In recent years, positron emission tomography/magnetic resonance (PET-MR) imaging technology has developed rapidly and has gradually been widely used in the research of PD. It has played a huge role in elucidating the pathophysiology of PD, combining the metabolic and molecular information of PET with the structural and functional information of MR imaging will help us understand the abnormalities of the brain network of PD patients at an overall level and further broaden our understanding of the disease.This article reviews the application progress of PET-MRI in PD.
[Keywords] Parkinson's disease;positron emission tomography;magnetic resonance imaging;functional magnetic resonance imaging;brain network

ZHANG Menghuan1, 2   BAI Yan1, 2   FENG Qin1, 2   WANG Mengke1, 2   WANG Meiyun1, 2*  

1 Department of Medical Imaging, the People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou 450003, China

2 Henan Provincial People's Hospital, Henan Key Laboratory of Neurological Imaging, Zhengzhou 450003, China

Wang MY, E-mail: mywang@ha.edu.cn

Conflicts of interest   None.

ACKNOWLEDGMENTS  This article is supported by the National Key Research and Development Program of China No. 2017YFE0103600 National Natural Science Foundation of China No.81601466, 81720108021 Zhongyuan Thousand Talents Plan Project--Zhongyuan Leader Talent No. ZYQR201810117 Program for Science and Technology Development of Henan Province No.182102310496 Program for Medical Science and Technology Development of Henan Province No. 2018020403
Received  2020-10-28
Accepted  2021-01-21
DOI: 10.12015/issn.1674-8034.2021.03.021
Cite this article as: Zhang MH, Bai Y, Feng Q, et al. Application progress of PET-MR imaging in Parkinson's disease[J]. Chin J Magn Reson Imaging, 2021, 12(3): 89-91. DOI:10.12015/issn.1674-8034.2021.03.021.

1
Grimes D, Fitzpatrick M, Gordon J, et al. Canadian guideline for Parkinson disease. J De L'association Med Can, 2019, 191(36): E989-E1004. DOI: 10.1503/cmaj.181504
2
Jia JP, Chen SD. Neurology. 8ed. Beijing: People's Medical Publishing House, 2018, 328-337.
3
Madhavi T, Atin K, Chandrasekhar B. Neuroimaging in Parkinsonian disorders. Neurol India, 2018, 66(Suppl): S68-S78. DOI: 10.4103/0028-3886.226460
4
Kaut O, Mielacher C, Hurlemann R, et al. Resting-state fMRI reveals increased functional connectivity in the cerebellum but decreased functional connectivity of the caudate nucleus in Parkinson's disease. Neurol Res, 2020, 42(1): 62-67. DOI: 10.1080/01616412.2019.1709141
5
Pilotto A, di Cola FS, Premi E, et al. Extrastriatal dopaminergic and serotonergic pathways in Parkinson's disease and in dementia with Lewy bodies: a 123I-FP-CIT SPECT study. Eur J Nucl Med Mol Imaging, 2019, 46(8): 1642-1651. DOI: 10.1007/s00259-019-04324-5
6
Kang Y, Henchcliffe C, Verma A, et al. 18F-FPEB PET/CT shows mGluR5 upregulation in Parkinson's disease. J Neuroimaging, 2019, 29(1): 97-103. DOI: 10.1111/jon.12563
7
Wehrl HF, Sauter AW, Divine MR, et al.Combined PET/MR: a technology becomes mature.J Nucl Med, 2015, 56(2): 165-168. DOI: 10.2967/jnumed.114.150318
8
Liu P, Fu LP. Technical progress of integrated PET/MR. Chin Med Devices, 2019, 34(12): 160-164. DOI: 10.3969/j.issn.1674-1633.2019.12.040
9
Souvatzoglou M, Eiber M, Martinez-Moeller A, et al. PET/MR in prostate cancer: technical aspects and potential diagnostic value. Eur J Nucl Med Mol Imaging, 2013, 40(Suppl 1): S79-S88. DOI: 10.1007/s00259-013-2445-4
10
Zeng TY, Song SL, Lü LL. Technical progress and clinical application of integrated PET/MR. Oncoradiology, 2019, 28(4): 276-282. DOI: 10.19732/j.cnki.2096-6210.2019.04.013
11
Cecchin D, Palombit A, Castellaro M, et al. Brain PET and functional MRI: why simultaneously using hybrid PET/MR systems. Q J Nucl Med Mol Imaging, 2017, 61(4): 345-359. DOI: 10.23736/S1824-4785.17.03008-4
12
Jokinen P, Helenius H, Rauhala E, et al. Simple ratio analysis of 18F-fluorodopa uptake in striatal subregions separates patients with early Parkinson disease from healthy controls. J Nucl Med, 2009, 50(6): 893-899. DOI: 10.2967/jnumed.108.061572
13
Holtbernd F, Ma Y, Peng S, et al. Dopaminergic correlates of metabolic network activity in Parkinson's disease. Hum Brain Mapp, 2015, 36(9): 3575-3585. DOI: 10.1002/hbm.22863
14
Mure H, Hirano S, Tang CC, et al. Parkinson's disease tremor-related metabolic network: characterization, progression, and treatment effects. Neuroimage, 2011, 54(2): 1244-1253. DOI: 10.1016/j.neuroimage.2010.09.028
15
Schindlbeck KA, Eidelberg D. Network imaging biomarkers: insights and clinical applications in Parkinson's disease. Lancet Neurol, 2018, 17(7): 629-640. DOI: 10.1016/S1474-4422(18)30169-8
16
Yue Y, Jiang Y, Shen T, et al. ALFF and ReHo mapping reveals different functional patterns in early- and late-onset Parkinson's disease. Front Neurosci, 2020, 14: 141. DOI: 10.3389/fnins.2020.00141
17
Ruppert MC, Greuel A, Tahmasian M, et al. Network degeneration in Parkinson's disease: multimodal imaging of nigro-striato-cortical dysfunction. Brain, 2020, 143(3): 944-959. DOI: 10.1093/brain/awaa019
18
Lotharius J, Brundin P. Pathogenesis of Parkinson's disease: dopamine, vesicles and alpha-synuclein. Nat Rev Neurosci, 2002, 3(12): 932-942. DOI: 10.1038/nrn983
19
Xuan M, Guan X, Huang P, et al. Different patterns of gray matter density in early- and middle-late-onset Parkinson's disease: a voxel-based morphometry study. Brain Imaging Behav, 2019, 13(1): 172-179. DOI: 10.1007/s11682-017-9745-4
20
Sampedro F, Marín-Lahoz J, Martínez-Horta S, et al. Dopaminergic degeneration induces early posterior cortical thinning in Parkinson's disease. Neurobiol Dis, 2019, 124: 29-35. DOI: 10.1016/j.nbd.2018.11.001
21
Kikuchi K, Hiwatashi A, Togao O, et al. Structural changes in Parkinson's disease: voxel-based morphometry and diffusion tensor imaging analyses based on 123I-MIBG uptake. Eur Radiol, 2017, 27(12): 5073-5079. DOI: 10.1007/s00330-017-4941-6
22
Choi H, Cheon GJ, Kim HJ, et al. Gray matter correlates of dopaminergic degeneration in Parkinson's disease: a hybrid PET/MR study using (18) F-FP-CIT. Hum Brain Mapp, 2016, 37(5): 1710-1721. DOI: 10.1002/hbm.23130
23
Chen SD. Guidelines for the treatment of Parkinson's disease in China (third edition). Chin J Neurol, 2014, 47(6): 428-433. DOI: 10.3760/cma.j.issn.1006-7876.2014.06.017
24
Liu Y, Li F, Luo H, et al. Improvement of deep brain stimulation in dyskinesia in Parkinson's disease: a Meta-analysis. Front Neurol, 2019, 10: 151. DOI: 10.3389/fneur.2019.00151
25
Bond AE, Shah BB, Huss DS, et al. Safety and efficacy of focused ultrasound thalamotomy for patients with medication-refractory, tremor-dominant Parkinson disease: a randomized clinical trial. JAMA Neurol, 2017, 74(12): 1412-1418. DOI: 10.1001/jamaneurol.2017.3098
26
Jung NY, Chang JW. Magnetic resonance-guided focused ultrasound in neurosurgery: taking lessons from the past to inform the future. J Korean Med Sci, 2018, 33(44): e279. DOI: 10.3346/jkms.2018.33.e279
27
Martínez-Fernández R, Rodríguez-Rojas R, Del Álamo M, et al.Focused ultrasound subthalamotomy in patients with asymmetric Parkinson's disease: a pilot study. Lancet Neurol, 2018, 17(1): 54-63. DOI: 10.1016/S1474-4422(17)30403-9
28
Magara A, Bühler R, Moser D, et al. First experience with MR-guided focused ultrasound in the treatment of Parkinson's disease. J Ther Ultrasound, 2014, 2: 11. DOI: 10.1186/2050-5736-2-11
29
Jung NY, Park CK, Kim M, et al. The efficacy and limits of magnetic resonance-guided focused ultrasound pallidotomy for Parkinson's disease: a Phase I clinical trial. J Neurosurg, 2018, 8(01): 1-9. DOI: 10.3171/2018.2.JNS172514
30
Obeso I, Casabona E, Rodríguez-Rojas R, et al. Unilateral subthalamotomy in Parkinson's disease: cognitive, psychiatric and neuroimaging changes. Cortex, 2017, 94: 39-48. DOI: 10.1016/j.cortex.2017.06.006
31
Rodriguez-Rojas R, Pineda-Pardo JA, Martinez-Fernandez R, et al. Functional impact of subthalamotomy by magnetic resonance-guided focused ultrasound in Parkinson's disease: a hybrid PET/MR study of resting-state brain metabolism. Eur J Nucl Med Mol Imaging, 2020, 47(2): 425-436. DOI: 10.1007/s00259-019-04497-z
32
Postuma RB, Berg D, Stern M, et al. DS clinical diagnostic criteria for Parkinson's disease. ov Disord, 2015, 30(12): 1591-1601. DOI: 10.1002/mds.26424
33
Barthel H, Schroeter ML, Hoffmann KT, et al. ET/MR in dementia and other neurodegenerative diseases. emin Nucl Med, 2015, 45(3): 224-233. DOI: 10.1053/j.semnuclmed.2014.12.003
34
Gao ZB, Wang W, Chen T, et al. The application of multimodal molecular imaging in the diagnosis of dementia with Lewy bodies. Chin J Contemp Neurol Neurosurg, 2017, 17(01): 46-52. DOI: 10.3969/j.issn.1672-6731.2017.01.009
35
Chen S, Leung YL, Yeung KMA, et al. Comparatives study of 18F-DOPA PET/MR and PET/CT in quantification accuracy and clinical applicability for Parkinson's disease: a static and dynamic data analysis. J Nucl Med, 2016, 57(Suppl 2): S1830.

PREV Advances in imaging differentiation of pseudoprogression and recurrence of brain gliomas after treatment
NEXT Research advances of magnetic resonance angiography in evaluating carotid arterystenosis
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn