Share:
Share this content in WeChat
X
Review
Research advances of magnetic resonance angiography in evaluating carotid arterystenosis
ZHANG Haonan  SONG Qingwei  ZHANG Qinhe  ZHANG Nan  SONG Yu 

Cite this article as: Zhang HN, Song QW, Zhang QH, et al. Research advances of magnetic resonance angiography in evaluating carotid arterystenosis[J]. Chin J Magn Reson Imaging, 2021, 12(3): 92-94. DOI:10.12015/issn.1674-8034.2021.03.022.


[Abstract] Carotid stenosis is an important cause of ischemic stroke. Early detection and early treatment can significantly reduce the fatality and disability rates. Magnetic resonance angiography plays an irreplaceable role in the quantitative assessment of carotid artery stenosis because of its advantages such as non-invasive, non-radiation and better resolution of soft tissue. This paper reviews the latest technology applications and research advances in the quantitative assessment of carotid artery stenosis using magnetic resonance angiography such as time of flight magnetic resonance angiography (TOF-MRA), contrast enhanced MRA (CE-MRA), zero echo time arterial spin aabeling MRA (zTE-ASL-MRA), four dimensional flow MRA (4D-Flow-MRA), black blood (BB), simultaneous noncontrast angiography and intraplaque hemorrhage imaging (SNAP), and rapid magnetic resonance imaging.
[Keywords] carotid stenosis;magetic resonance imaging;angiography;compressed sensing

ZHANG Haonan1   SONG Qingwei1*   ZHANG Qinhe1   ZHANG Nan1   SONG Yu2  

1 Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China

2 Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu 610041, China

Song QW, E-mail: songqw1964@163.com

Conflicts of interest   None.

Received  2020-12-18
Accepted  2021-01-21
DOI: 10.12015/issn.1674-8034.2021.03.022
Cite this article as: Zhang HN, Song QW, Zhang QH, et al. Research advances of magnetic resonance angiography in evaluating carotid arterystenosis[J]. Chin J Magn Reson Imaging, 2021, 12(3): 92-94. DOI:10.12015/issn.1674-8034.2021.03.022.

1
Ma YR, Han N, Zhang J. Multi-modality MRI study of relationship between carotid atherosclerotic stenosis and cerebral hemodynamics. Chin J Magn Reson Imaging, 2018, 9(10): 747-753. DOI: 10.12015/issn.1674-8034.2018.10.006
2
Zhang J, Ding S, Zhao H, et al. Evaluation of chronic carotid artery occlusion by non-contrast 3D-MERGE MR vessel wall imaging: comparison with 3D-TOF-MRA, contrast-enhanced MRA, and DSA. Eur Radiol, 2020, 30(11): 5805-5814. DOI: 10.1007/s00330-020-06989-1
3
Qiao H, Cai Y, Huang M, et al. Quantitative assessment of carotid artery atherosclerosis by three-dimensional magnetic resonance and two-dimensional ultrasound imaging: a comparison study. Quant Imaging Med Surg, 2020, 10(5): 1021-1032. DOI: 10.21037/qims-19-818
4
Grochowski C, Krukow P, Jonak K, et al. The assessment of lenticulostriate arteries originating from middle cerebral artery using ultra high-field magnetic resonance time-of-flight angiography. J Clin Neurosci, 2019, 68: 262-265. DOI: 10.1016/j.jocn.2019.07.003
5
Hinshaw WS, Bottomley PA, Holland GN. Radiographic thin-section image of the human wrist by nuclear magnetic resonance. Nature, 1977, 270(5639): 722-723. DOI: 10.1038/270722a0
6
Haifeng L, Yongsheng X, Yangqin X, et al. Diagnostic value of 3D time-of-flight magnetic resonance angiography for detecting intracranial aneurysm: a meta-analysis. Neuroradiology, 2017, 59(11): 1083-1092. DOI: 10.1007/s00234-017-1905-0
7
Zhang X, Cao YZ, Mu XH, et al. Highly accelerated compressed sensing time-of-flight magnetic resonance angiography may be reliable for diagnosing head and neck arterial steno-occlusive disease: a comparative study with digital subtraction angiography. Eur Radiol, 2020, 30(6): 3059-3065. DOI: 10.1007/s00330-020-06682-3
8
Weber J, Veith P, Jung B, et al. MR angiography at 3 tesla to assess proximal internal carotid artery stenoses: contrast-enhanced or 3D time-of-flight MR angiography?Clin Neuroradiol, 2015, 25(1): 41-48. DOI: 10.1007/s00062-013-0279-x
9
Brinjikji W, Huston JR, Rabinstein AA, et al. Contemporary carotid imaging: from degree of stenosis to plaque vulnerability. J Neurosurg, 2016, 124(1): 27-42. DOI: 10.3171/2015.1.JNS142452
10
Tartari S, Rizzati R, Righi R, et al. High-resolution MRI of carotid plaque with a neurovascular coil and contrast-enhanced MR angiography: one-stop shopping for the comprehensive assessment of carotid atherosclerosis. AJR Am J Roentgenol, 2011, 196(5): 1164-1171. DOI: 10.2214/AJR.10.4751
11
Lu JP, Liu Q, He XH, et al. The diagnostic value of three-dimensional contrast-enhanced MR angiography in the arterial disease of the neck region. Chin J Radiol, 2004, 38(1): 76-81. DOI: 10.3760/j.issn:1005-1201.2004.01.016
12
Kugener G, Rajamohan A, Patel V, et al. Caught in the act: Allergic-like reaction to gadolinium-based contrast agent in POEMS syndrome. Radiol Case Rep, 2020, 15(7): 887-890. DOI: 10.1016/j.radcr.2020.04.027
13
Song Y, Huang J, Qi P, et al. Investigation of zero echo time arterial spin labeling MR angiography in the follow-up of endovascular treatment of intracranial aneurysm. Chin J Radiol, 2018, 52(8): 624-629. DOI: 10.3760/cma.j.issn.1005?1201.2018.08.011
14
Song Y, Qi P, Huang J, et al. Application of zero echo time MR angiography in follow-up of intracranial aneurysm remnant and in-stent lumen after embolization: a comparison study with digital subtraction angiography. Acta Radiol, 2020, 61(4): 480-486. DOI: 10.1177/0284185119865721
15
Irie R, Suzuki M, Yamamoto M, et al. Assessing blood flow in an intracranial stent: a feasibility study of MR angiography using a silent scan after stent-assisted coil embolization for anterior circulation aneurysms. AJNR Am J Neuroradiol, 2015, 36(5): 967-970. DOI: 10.3174/ajnr.A4199
16
Zhai MX, Li WC, Tang B, et al. Preliminary clinical application of ZeroTE-MRA on Head-Neck. J Clin Radiol, 2019, 38(2): 351-354.
17
Ando T, Sekine T, Murai Y, et al. Multiparametric flow analysis using four-dimensional flow magnetic resonance imaging can detect cerebral hemodynamic impairment in patients with internal carotid artery stenosis. Neuroradiology, 2020, 62(11): 1421-1431. DOI: 10.1007/s00234-020-02464-2
18
Van Ooij P, Powell AL, Potters WV, et al. Reproducibility and interobserver variability of systolic blood flow velocity and 3D wall shear stress derived from 4D flow MRI in the healthy aorta. J Magn Reson Imaging, 2016, 43(1): 236-248. DOI: 10.1002/jmri.24959
19
Harloff A, Berg S, Barker AJ, et al. Wall shear stress distribution at the carotid bifurcation: influence of eversion carotid endarterectomy. Eur Radiol, 2013, 23(12): 3361-3369. DOI: 10.1007/s00330-013-2953-4
20
Schrauben E, Wahlin A, Ambarki K, et al. Fast 4D flow MRI intracranial segmentation and quantification in tortuous arteries. J Magn Reson Imaging, 2015, 42(5): 1458-1464. DOI: 10.1002/jmri.24900
21
Yuan J, Usman A, Reid SA, et al. Three-dimensional black-blood multi-contrast carotid imaging using compressed sensing: a repeatability study. MAGMA, 2018, 31(1): 183-190. DOI: 10.1007/s10334-017-0640-1
22
Ma YR, Zhang T, Zhang J. The advantages and clinical value of high resolution MRI in evaluating the stability of carotid plaque. Chin J Magn Reson Imaging, 2016, 7(8): 630-634. DOI: 10.12015/issn.1674-8034.2016.08.015
23
Wang ZJ, Yu W, Fan ZY, et al. Diagnostic value of joint head and neck vessel wall imaging technique for internal carotid artery occlusion diseases: comparison with DSA. J Med Imaging, 2019, 29(11): 1817-1822
24
Wu J, Xin J, Yang X, et al. Deep morphology aided diagnosis network for segmentation of carotid artery vessel wall and diagnosis of carotid atherosclerosis on black-blood vessel wall MRI. Med Phys, 2019, 46(12): 5544-5561. DOI: 10.1002/mp.13739
25
Liu H, Sun J, Hippe DS, et al. Improved carotid lumen delineation onnon-contrast MR angiography using SNAP (simultaneous non-contrast angiography and intraplaque hemorrhage) imaging. Magn Reson Imaging, 2019, 62: 87-93. DOI: 10.1016/j.mri.2019.06.012
26
Wang J, Bornert P, Zhao H, et al. Simultaneous noncontrast angiography and intraplaque hemorrhage (SNAP) imaging for carotid atherosclerotic disease evaluation. Magn Reson Med, 2013, 69(2): 337-345. DOI: 10.1002/mrm.24254
27
Li D, Zhao H, Chen X, et al. Identification of intraplaque haemorrhage in carotid artery by simultaneous non-contrast angiography and intraPlaque haemorrhage (SNAP) imaging: a magnetic resonance vessel wall imaging study. Eur Radiol, 2018, 28(4): 1681-1686. DOI: 10.1007/s00330-017-5096-1
28
Shu H, Sun J, Hatsukami TS, et al. Simultaneous noncontrast angiography and intraplaque hemorrhage (SNAP) imaging: comparison with contrast-enhanced MR angiography for measuring carotid stenosis. J Magn Reson Imaging, 2017, 46(4): 1045-1052. DOI: 10.1002/jmri.25653
29
Zhang, Q, Qiao H, Dou J, et al. Plaque components segmentation in carotid artery on simultaneous noncontrast angiography and intraplaque hemorrhage imaging using machine learning. Magn Reson Imaging, 2019, 60(7): 93-100. DOI: 10.1016/j.mri.2019.04.001
30
Lu Y, Huang RJ, Li YG. Comparison of simultaneous non-contrast angiography and intraplaque hemorrhage imaging with conventional black blood technique in the high resolution craniocervical artery imaging. Radiol Pract, 2019, 34(8): 863-868. DOI: 10.13609/j.cnki.1000-0313.2019.08.007
31
Pruessmann KP, Weiger M, Scheidegger MB, et al. SENSE: sensitivity encoding for fast MRI. Magn Reson Med, 1999, 42(5): 952- 962.
32
Sumi T, Sumi M, Van Cauteren M. Parallel imaging technique for the external carotidartery and its branches: comparison of balanced turbo field echo, phase contrast, and time-of-flight sequences. J Magn Reson Imaging, 2007, 25(5): 1028-1034. DOI: 10.1002/jmri.20889
33
Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med, 2007, 58(6): 1182-1195. DOI: 10.1002/mrm.21391
34
Bratke G, Rau R, Weiss K, et al. Accelerated MRI of the lumbar spine using compressed sensing: quality and efficiency. J Magn Reson Imaging, 2019, 49(7): e164-e175. DOI: 10.1002/jmri.26526
35
Suzuki T, Aonuma T, Oyama K, et al. High-resolution three-dimensional T1-weighted hepatobiliary MR cholangiography using Gd-EOB-DTPA for assessment of biliary tree anatomy: Parallel imaging versus compressed sensing. Eur J Radiol, 2021, 136(1): 109515. DOI: 10.1016/j.ejrad.2020.109515
36
Ikeda H, Ohno Y, Murayama K, et al. Compressed sensing and parallel imaging accelerated T2 FSE sequence for head and neck MR imaging: comparison of its utility in routine clinical practice. Eur J Radiol, 2020, 135(12): 109501. DOI: 10.1016/j.ejrad.2020.109501
37
Li B, Li H, Dong L, et al. Fast carotid artery MR angiography with compressed sensing based three-dimensional time-of-flight sequence. Magn Reson Imaging, 2017, 43(11): 129-135. DOI: 10.1016/j.mri.2017.07.017
38
Yuan J, Usman A, Reid SA, et al. Three-dimensional black-blood T2 mapping with compressed sensing and data-driven parallel imaging in the carotid artery. Magn Reson Imaging, 2017, 37(4): 62-69 . DOI: 10.1016/j.mri.2016.11.014

PREV Application progress of PET-MR imaging in Parkinson's disease
NEXT The application of cardiovascular magnetic resonance in risk stratification and prognosis evaluation in dilated cardiomyopathy
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn