Share:
Share this content in WeChat
X
Review
Research progress of DWI-MRI and BOLD-fMRI in visual pathway diseases
ZHANG Xueping  BAI Yan  WANG Meiyun  WANG Shang  CHEN Chuanliang 

Cite this article as: Zhang XP, Bai Y, Wang MY, et al. Research progress of DWI-MRI and BOLD-fMRI in visual pathway diseases[J]. Chin J Magn Reson Imaging, 2012, 12(4): 115-117, 124. DOI:10.12015/issn.1674-8034.2021.04.029.


[Abstract] Visual pathway refers to the pathway of transmission of all visual nerve impulses from retinal photoreceptors to the visual center of occipital cortex, including retina, optic nerve, optic chiasma, optic tract, optic radiation and visual cortex. Because visual signals are transmitted by nerve fibers and synaptic signals, a part of the optic pathway with problems may affect other functions of nerve anterogradely or retrogradely. Conventional MRI can only showed lesions from morphology, and can't detect the change of micro-structure. The nerve ophthalmology examination also has certain limitation that it can't detect the change of rear pathway and have a little subjectivity. Recently, with the development of MRI, DWI-MRI and BOLD-fMRI are becoming more and more mature. Studies of DWI-MRI and BOLD-fMRI in visual pathway diseases is increasing. This article mainly describes the study of DWI-MRI and BOLD-fMRI in visual pathway diseases.
[Keywords] visual pathway;diffusion weighted imaging;functional magnetic resonance imaging;blood oxygen level dependent

ZHANG Xueping   BAI Yan   WANG Meiyun   WANG Shang   CHEN Chuanliang*  

Department of Imaging, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou 450003, China

Chen CL, E-mail: henanccl@163.com

Conflicts of interest   None.

This work was part of National Key Research and Development Program of China (No. 2017YFE0103600); National Natural Science Foundation of China (No. 81601466).
Received  2020-12-31
Accepted  2021-01-28
DOI: 10.12015/issn.1674-8034.2021.04.029
Cite this article as: Zhang XP, Bai Y, Wang MY, et al. Research progress of DWI-MRI and BOLD-fMRI in visual pathway diseases[J]. Chin J Magn Reson Imaging, 2012, 12(4): 115-117, 124. DOI:10.12015/issn.1674-8034.2021.04.029.

1
Jensen JH, Helpern JA, Ramani A, et al. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging[J]. Magn Reson Med, 2005, 53(6): 1432-1440. DOI: 10.1002/mrm.20508.
2
Yilmaz S, Yumusak E, Burulday V. Changes of normal appearing optic nerve head on diffusion-weighted imaging in patients with diabetic retinopathy[J]. Clin Imaging, 2017, 42: 60-63. DOI: 10.1016/j.clinimag.2016.11.012.
3
Liang M, Chen X, Xue F, et al. Diffusion-weighted imaging of injuries to the visual centers of the brain in patients with type 2 diabetes and retinopathy[J]. Exp Ther Med, 2017, 14(2): 1153-1156. DOI: 10.3892/etm.2017.4582.
4
Danyel LA, Bohner G, Connolly F, et al. Standard diffusion-weighted MRI for the diagnosis of central retinal artery occlusion: A case-control study[J]. Clin Neuroradiol, 2020, Sep 16. DOI: 10.1007/s00062-020-00955-6.
5
Yoshimine S, Ogawa S, Horiguchi H, et al. Age-related macular degeneration affects the optic radiation white matter projecting to locations of retinal damage[J]. Brain Struct Funct, 2018, 223(8): 3889-3900. DOI: 10.1007/s00429-018-1702-5.
6
Zhang Y, Guo X, Wang M, et al. Reduced field-of-view diffusion tensor imaging of the optic nerve in retinitis pigmentosa at 3T[J]. AJNR Am J Neuroradiol, 2016, 37(8): 1510-1515. DOI: 10.3174/ajnr.A4767.
7
Takemura H, Ogawa S, Mezer AA, et al. Diffusivity and quantitative T1 profile of human visual white matter tracts after retinal ganglion cell damage[J]. Neuroimage Clin, 2019, 23: 101826. DOI: 10.1016/j.nicl.2019.101826.
8
Schneider CL, Prentiss EK, Busza A, et al. Survival of retinal ganglion cells after damage to the occipital lobe in humans is activity dependent[J]. Proc Biol Sci, 2019, 286(1897): 20182733. DOI: 10.1098/rspb.2018.2733.
9
Kolbe S, Bajraszewski C, Chapman C, et al. Diffusion tensor imaging of the optic radiations after optic neuritis[J]. Hum Brain Mapp, 2012, 33(9): 2047-2061. DOI: 10.1002/hbm.21343.
10
Chen J, Zhu L, Li H, et al. Diffusion tensor imaging of occult injury of optic radiation following optic neuritis in multiple sclerosis[J]. Exp Ther Med, 2016, 12(4): 2505-2510. DOI: 10.3892/etm.2016.3635.
11
Ngamsombat C, Tian Q, Fan Q, et al. Axonal damage in the optic radiation assessed by white matter tract integrity metrics is associated with retinal thinning in multiple sclerosis[J]. Neuroimage Clin, 2020, 27: 102293. DOI: 10.1016/j.nicl.2020.102293.
12
Pache F, Zimmermann H, Finke C, et al. Brain parenchymal damage in neuromyelitis optica spectrum disorder-A multimodal MRI study[J]. Eur Radiol, 2016, 26(12): 4413-4422. DOI: 10.1007/s00330-016-4282-x.
13
Lu P, Yuan T, Liu X, et al. Role of diffusional kurtosis imaging in differentiating neuromyelitis optica-related and multiple sclerosis-related acute optic neuritis: Comparison with diffusion-weighted imaging[J]. J Comput Assist Tomogr, 2020, 44(1): 47-52. DOI: 10.1097/RCT.0000000000000974.
14
Wang MY, Qi PH, Shi DP. Diffusion tensor imaging of the optic nerve in subacute anterior ischemic optic neuropathy at 3T[J]. AJNR Am J Neuroradiol, 2011, 32(7): 1188-1194. DOI: 10.3174/ajnr.A2487.
15
Ozkan B, Anik Y, Katre B, et al. Quantitative assessment of optic nerve with diffusion tensor imaging in patients with thyroid orbitopathy[J]. Ophthalmic Plast Reconstr Surg, 2015, 31(5): 391-395. DOI: 10.1097/IOP.0000000000000359.
16
Lee H, Lee YH, Suh SI, et al. Characterizing intraorbital optic nerve changes on diffusion tensor imaging in thyroid eye disease before dysthyroid optic neuropathy[J]. J Comput Assist Tomogr, 2018, 42(2): 293-298. DOI: 10.1097/RCT.0000000000000680.
17
Zhang Y, Wan SH, Wu GJ, et al. Magnetic resonance diffusion tensor imaging and diffusion tensor tractography of human visual pathway[J]. Int J Ophthalmol, 2012, 5(4): 452-458. DOI: 10.3980/j.issn.2222-3959.2012.04.09.
18
Wu CN, Duan SF, Mu XT, et al. Assessment of optic nerve and optic tract alterations in patients with orbital space-occupying lesions using probabilistic diffusion tractography[J]. Int J Ophthalmol, 2019, 12(8): 1304-1310. DOI: 10.18240/ijo.2019.08.11.
19
Tao XF, Wang ZQ, Gong WQ, et al. A new study on diffusion tensor imaging of the whole visual pathway fiber bundle and clinical application[J]. Chin Med J (Engl), 2009, 122(2): 178-182. DOI: 10.3760/cma.j.issn.0366-6999.2009.02.013.
20
Rutland JW, Padormo F, Yim CK, et al. Quantitative assessment of secondary white matter injury in the visual pathway by pituitary adenomas: a multimodal study at 7-Tesla MRI[J]. J Neurosurg, 2019, 132(2): 333-342. DOI: 10.3171/2018.9.JNS182022.
21
Anik I, Anik Y, Koc K, et al. Evaluation of early visual recovery in pituitary macroadenomas after endoscopic endonasal transphenoidal surgery: Quantitative assessment with diffusion tensor imaging (DTI)[J]. Acta Neurochir (Wien), 2011, 153(4): 831-842. DOI: 10.1007/s00701-011-0942-4.
22
Zhang Y, Wan S, Wen G, et al. The disruption of geniculocalcarine tract in occipital neoplasm: A diffusion tensor imaging study[J]. Radiol Res Pract, 2016, 2016: 8213076, DOI: 10.1155/2016/8213076.
23
Zhang Y, Wan S, Zhang X. Geniculocalcarine tract disintegration after ischemic stroke: a diffusion tensor imaging study[J]. AJNR Am J Neuroradiol, 2013, 34(10): 1890-1894. DOI: 10.3174/ajnr.A3535.
24
Tong Y, Huang X, Gao Q, et al. Fractional amplitude of low-frequency fluctuations in retinal vein occlusion: a resting-state fMRI study[J]. Chin J Ophthalmol, 2020, 56(4): 266-271. DOI: 10.3760/cma.j.cn112142-20200904-00452.
25
Dan HD, Zhou FQ, Huang X, et al. Altered intra-and inter-regional functional connectivity of the visual cortex in individuals with peripheral vision loss due to retinitis pigmentosa[J]. Vision Res, 2019, 159: 68-75. DOI: 10.1016/j.visres.2019.02.013.
26
Kang HH, Shu YQ, Yang L, et al. Measuring abnormal intrinsic brain activities in patients with retinal detachment using amplitude of low-frequency fluctuation: a resting-state fMRI study[J]. Int J Neurosci, 2019, 129(7): 681-686. DOI: 10.1080/00207454.2018.1554657.
27
Sacco R, Bonavita S, Esposito F, et al. The contribution of resting state networks to the study of cortical reorganization in MS[J]. Mult Scler Int, 2013, 2013: 857807. DOI: 10.1155/2013/857807.
28
Lopes FC, Alves-Leon SV, Godoy JM, et al. Optic neuritis and the visual pathway: Evaluation of neuromyelitis optica spectrum by resting-state fMRI and diffusion tensor MRI[J]. J Neuroimaging, 2015, 25(5): 807-812. DOI: 10.1111/jon.12191.
29
Han YL, Li YM, Luo Q, et al. Functional connectivity density alterations at resting state in neuromyelitis optica patients[J]. Chin JMagn Reson Imaging, 2018, 9(1): 33-37. DOI: 10.12015/issn.1674-8034.2018.01.007.
30
Guo PD, Zhao PB, Lv H, et al. Abnormal spontaneous brain activity in patients with non-arteritic anterior ischemic optic neuropathy detected using functional magnetic resonance imaging[J]. Chin Med J (Engl), 2019, 132(6): 741-743. DOI: 10.1097/CM9.0000000000000134.
31
Guo P, Zhao P, Lv H, et al. Abnormal regional spontaneous neural activity in nonarteritic anterior ischemic optic neuropathy: A resting-state functional MRI study[J]. Neural Plast, 2020, 2020: 8826787, DOI: 10.1155/2020/8826787.
32
Ying J, Li C, Yuan T, et al. Increased resting-state functional connectivity in suprasellar tumor patients with postoperative visual improvement[J]. Int J Med Sci, 2019, 16(9): 1245-1253. DOI: 10.7150/ijms.35660.
33
Qian H, Wang X, Wang Z, et al. Altered vision-related resting-state activity in pituitary adenoma patients with visual damage[J]. PLoS One, 2016, 11(8): e0160119, DOI: 10.1371/journal.pone.0160119.
34
Binda P, Kurzawski JW, Lunghi C, et al. Response to short-term deprivation of the human adult visual cortex measured with 7T BOLD[J]. eLife, 2018, 7: e40014. DOI: 10.7554/eLife.40014.
35
Collins OB, Mark TW. Brief period of monocular deprivation drives changes in audiovisual temporal perception[J]. J Vision, 2020, 20(8): 8-20. DOI: 10.1167/jov.20.8.8.

PREV The hippocampus multimodal MRI progress of cognitive impairment
NEXT Application progress of magnetic resonance imaging in diabetic kidney disease
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn