Share:
Share this content in WeChat
X
Review
Tumor microenvironment responsive 19F-MR molecular imaging nanoprobe
HU Xuesong  WEI Jianan  WANG Hongbin  WU Lina  WANG Kai  SUN Xilin 

Cite this article as: Hu XS, Wei JN, Wang HB, et al. Tumor microenvironment responsive 19F-MR molecular imaging nanoprobe[J]. Chin J Magn Reson Imaging, 2021, 12(5): 121-124. DOI:10.12015/issn.1674-8034.2021.05.030.


[Abstract] Tumor microenvironment (TME) is closely related to the occurrence and metastasis of tumors and the structure and function of the tumor tissues.In vivo research on the interaction mechanism between tumor cells and TME is an urgent need for basical and clinical research on the occurrence and development of cancer, the development of new technology for accurate tumor diagnosis, and the development of new strategy for effective tumor inhibition. Molecular imaging focuses on molecular changes in biological processes, and early intervention and improvement of prognosis are of great significance for the study of molecular changes and environmental changes in early TME. With the continuous development of nanotechnology, a variety of 19F-MR nanomolecular imaging probes have been developed in response to TME. Such probes can change their molecular conformations under certain stimuli in complex TME, exposing the 19F nuclear mass and significantly enhancing the 19F-MR signal. By utilizing the environmental response characteristic of probe and combining with 19F-MR imaging, abnormal malignant biological behaviors in TME can be visualized at the early molecular level, providing favorable support for the realization of early diagnosis of tumor and guidance of precise treatment of tumor. This review based on basic and clinical studies, reviews the developed TME responsive nanomolecular imaging probes, so as to provide research ideas and theoretical basis for the design, preparation and clinical transformation of the new 19F-MR nanomolecular imaging probes.
[Keywords] tumor microenvironment;molecular imaging;nanomolecular imaging probe;19F;magnetic resonance imaging;intelligent environment response

HU Xuesong1, 2   WEI Jianan1, 2   WANG Hongbin1, 2   WU Lina1, 2   WANG Kai1, 2   SUN Xilin1, 2*  

1 TOF-PET/CT/MR Center, Harbin Medical University, Harbin 150028, China

2 Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin 150028, China

Sun XL, E-mail: sunxl@ems.hrbmu.edu.cn

Conflicts of interest   None.

ACKNOWLEDGMENTS This article is supported by the National Natural Science Foundation of China (No. 81627901). The National Basic Research Program of China (No. 2015CB931800). The Natural Science Foundation of Heilongjiang Province (No. JQ2020H002).
Received  2020-12-01
Accepted  2021-03-25
DOI: 10.12015/issn.1674-8034.2021.05.030
Cite this article as: Hu XS, Wei JN, Wang HB, et al. Tumor microenvironment responsive 19F-MR molecular imaging nanoprobe[J]. Chin J Magn Reson Imaging, 2021, 12(5): 121-124. DOI:10.12015/issn.1674-8034.2021.05.030.

1
Paget S. Distribution of secondary growths in cancer of the breast[J]. Cancer Metastasis Rev, 1989, 8(2): 98-101.
2
Wang JJ Lei KF, Han F. Tumor microenvironment: recent advances in various cancer treatments[J]. Eur Rev Med Pharmacol Sci, 2018, 22(12): 3855-3864. DOI: 10.26355/eurrev_201806_15270.
3
Chen S, Yang Y, Li H, et al. pH-triggered au-fluorescent mesoporous silica nanoparticles for 19F MR/fluorescent multimodal cancer cellular imaging[J]. Chem Commun (Camb), 2014, 50(3): 283-285. DOI: 10.1039/c3cc47324d.
4
Park H, Saravanakumar G, Kim J, et al. Tumor microenvironment sensitive nanocarriers for bioimaging and therapeutics[J]. Adv Healthc Mater, 2021, 10(5): e2000834. DOI: 10.1002/adhm.202000834.
5
Qing S, Lyu C, Zhu L, et al. Biomineralized bacterial outer membrane vesicles potentiate safe and efficient tumor microenvironment reprogramming for anticancer therapy[J]. Adv Mater, 2020, 32(47): e2002085. DOI: 10.1002/adma.202002085.
6
Chen B, Gao A, Tu B, et al. Metabolic modulation via mTOR pathway and anti-angiogenesis remodels tumor microenvironment using PD-L1- targeting codelivery[J]. Biomaterials, 2020, 255: 120187. DOI: 10.1016/j.biomaterials.2020.120187.
7
Roma-Rodrigues C, Mendes R, Baptista P, et al. Targeting tumor microenvironment for cancer therapy[J]. Int J Mol Sci, 2019, 20(4): 840. DOI: 10.3390/ijms20040840.
8
Zeng D, Li M, Zhou R, et al. Tumor microenvironment characterization in gastric cancer identifies prognostic and immunotherapeutically relevant gene signatures[J]. Cancer Immunol Res, 2019, 7(5): 737-750. DOI: 10.1158/2326-6066.CIR-18-0436.
9
Wu LJ, Zhao GM, Zhang XPRelationship between hypoxia microenvironment and tumor[J]. Clinl Med Chin, 2014, 30(7): 782-784. DOI: 10.3760/cma.j.issn.1008-6315.2014.07.041.
10
Bhattacharya S, Calar K, De La Puente P. Mimicking tumor hypoxia and tumor-immune interactions employing three-dimensional in vitro models[J]. J Exp Clin Cancer Res, 2020, 39(1): 75. DOI: 10.1186/s13046-020-01583-1.
11
Riera-Domingo C, Audigé A, Granja S, et al. Immunity, hypoxia and metabolism-the ménage à trois of cancer: implications for immunotherapy[J]. Physiol Rev, 2020, 100(1): 1-102. DOI: 10.1152/physrev.00018.2019.
12
Akazawa K, Sugihara F, Nakamura T, et al. Highly sensitive detection of caspase-3/7 activity in living mice using enzyme-responsive (19)F MRI nanoprobes[J]. Bioconjug Chem, 2018, 29(5): 1720-1728. DOI: 10.1021/acs.bioconjchem.8b00167.
13
Fathi M, Safary A, Barar J. Therapeutic impacts of enzyme-responsive smart nanobiosystems[J]. Bioimpacts, 2020, 10(1): 1-4. DOI: 10.15171/bi.2020.01.
14
Liu X, Hao Y, Popovtzer R, et al. Construction of enzyme nanoreactors to enable tumor microenvironment modulation and enhanced cancer treatment[J]. Adv Healthc Mater, 2021, 10(5): e2001167. DOI: 10.1002/adhm.202001167.
15
Preslar AT, Lilley LM, Sato K, et al. Calcium-induced morphological transitions in peptide amphiphiles detected by (19)F-magnetic resonance imaging[J]. ACS Appl Mater Interfaces, 2017, 9(46): 39890-39894. DOI: 10.1021/acsami.7b07828.
16
Jeon M, Halbert MV, Stephen ZR, et al. Iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging:fundamentals, challenges, applications, and prospectives[J]. Adv Mater, 2020: e1906539. DOI: 10.1002/adma.201906539.
17
Xie D, Yu M, Kadakia RT, et al. (19)F magnetic resonance activity-based sensing using paramagnetic metals[J]. Acc Chem Res, 2020, 53(1): 2-10. DOI: 10.1021/acs.accounts.9b00352.
18
Bouvain P, Temme S, Flogel U. Hot spot (19) F magnetic resonance imaging of inflammation[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2020, 12(6): e1639. DOI: 10.1002/wnan.1639.
19
Wu L, Liu F, Liu S, et al. Perfluorocarbons-based (19)F magnetic resonance imaging in biomedicine[J]. Int J Nanomedicine, 2020, 15: 7377-7395. DOI: 10.2147/IJN.S255084.
20
Xie M, Wang Z, Lu Q, et al. Ultracompact iron oxide nanoparticles with a monolayer coating of succinylated heparin: a new class of renal-clearable and nontoxic T1 agents for high-field MRI[J]. ACS Appl Mater Interfaces, 2020: 19. DOI: 10.1021/acsami.0c12454.
21
Liu L, Jin R, Duan J, et al. Bioactive iron oxide nanoparticles suppress osteoclastogenesis and ovariectomy-induced bone loss through regulating the TRAF6-p62-CYLD signaling complex[J]. Acta Biomater, 2020, 103: 281-292. DOI: 10.1016/j.actbio.2019.12.022.
22
Huo DX, Chen B, Meng GW, et al. Ag-nanoparticles@bacterial nanocellulose as a 3D flexible and__robust surface-enhanced raman scattering substrate[J]. ACS Appl Mater Interfaces, 2020, 12(45): 50713-50720. DOI: 10.1021/acsami.0c13828.
23
Dong X, Cao L, Si Y, et al. Cellular structured CNTs@SiO2 nanofibrous aerogels with vertically aligned vessels for salt-resistant solar desalination[J]. Adv Mater, 2020, 32(34): e1908269. DOI: 10.1002/adma.201908269.
24
Guillet-Nicolas R, Wainer M, Marcoux L, et al. Exploring the confinement of polymer nanolayers into ordered mesoporous silica using advanced gas physisorption[J]. J Colloid Interface Sci, 2020, 579: 489-507. DOI: 10.1016/j.jcis.2020.05.103.
25
Ma J, Li Y, Zhou X, et al. Au nanoparticles decorated mesoporous SiO2-WO3 hybrid materials with improved pore connectivity for ultratrace ethanol detection at low operating temperature[J]. Small, 2020, 16(46): e2004772. DOI: 10.1002/smll.202004772.
26
Sun Y, Sun B, He J, et al. Millimeters long super flexible Mn5Si3@SiO2 electrical nanocables applicable in harsh environments[J]. Nat Commun, 2020, 11(1): 647. DOI: 10.1038/s41467-019-14244-5.
27
Wolfram J, Zhu MT, Yang Y, et al. Safety of nanoparticles in medicine[J]. Curr Drug Targets, 2015, 16(14): 1671-81. DOI: 10.2174/1389450115666140804124808.
28
Chen Q, Feng L, Liu J, et al. Intelligent albumin-MnO2Nanoparticles as pH-/H2O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy[J]. Adv Mater, 2016, 28(33): 7129-7136. DOI: 10.1002/adma.201601902.
29
Zhu X, Tang X, Lin H, et al. A fluorinated ionic liquid-based activatable 19F MRI platform detects biological targets[J]. Chem, 2020, 6(5): 1134-1148. DOI: 10.1016/j.chempr.2020.01.023.
30
Cameron IL, Smith NK, Pool TB, et al. Intracellular concentration of sodium and other elements as related to mitogenesis and oncogenesis in vivo[J]. Cancer Res, 1980, 40(5): 1493-1500.
31
Nagy I, Lustyik G, Lukács G, et al. Correlation of malignancy with the intracellular Na+:K+ ratio in human thyroid tumors[J]. Cancer Res, 1983, 43(11): 5395-5402.
32
Despa S, Islam MA, Weber CR, et al. Intracellular Na(+) concentration is elevated in heart failure but Na/K pump function is unchanged[J]. Circulation, 2002, 105(21): 2543-2548. DOI: 10.1161/01.CIR.0000016701.85760.97.
33
Smith NR, Sparks RL, Pool TB, et al. Differences in the intracellular concentration of elements in normal and cancerous liver cells as determined by X-ray microanalysis[J]. Cancer Res, 1978, 38(7): 1952-1959.
34
Smith NK, Stabler SB, Cameron IL, et al. X-ray microanalysis of electrolyte content of normal, preneoplastic, and neoplastic mouse mammary tissue[J]. Cancer Res, 1981, 41(10): 3877-3880.
35
Zhang C, Moonshi SS, Peng H, et al. Ion-responsive 19F MRI contrast agents for the detection of cancer cells[J]. ACS Sensors, 2016, 1(6): 757-65. DOI: 10.13488/j.smhx.20140506.
36
Guo J, Li H, Xu CQ. Application of PRE on protein structure and dynamics study[J]. Chem Life, 2014, 34(5): 621-626. DOI: 10.13488/j.smhx.20140506.
37
Hu J, Cheng K, Wu Q, et al. Dual fluorogenic and 19F NMR probe for detection of the esterase activity[J]. Mater Chem Front, 2013. DOI: 10.1039/C8QM00107C.
38
Stathopoulos AM, Cyert MS. Calcineurin acts through the CRZ1/TCN1-encoded transcription factor to regulate gene expression in yeast[J]. Genes Dev, 1997, 11(24): 3432-3444. DOI: 10.1101/gad.11.24.3432.
39
Guo C, Zhang Y, Li Y, et al. (19)F MRI nanoprobes for the turn-on detection of phospholipase A2 with a low background[J]. Anal Chem, 2019, 91(13): 8147-8153. DOI: 10.1021/acs.analchem.9b00435.
40
Cummings BS. Phospholipase A2 as targets for anti-cancer drugs[J]. Biochem Pharmacol, 2007, 74(7): 949-959. DOI: 10.1016/j.bcp.2007.04.021.
41
Du J, Lane LA, Nie S. Stimuli-responsive nanoparticles for targeting the tumor microenvironment[J]. J Control Release, 2015, 219: 205-214. DOI: 10.1016/j.jconrel.2015.08.050.
42
Kutova OM, Guryev EL, Sokolova EA, et al. Targeted delivery to tumors: multidirectional strategies to improve treatment efficiency[J]. Cancers (Basel), 2019, 11(1): 68. DOI: 10.3390/cancers11010068.
43
Kadakia RT, Xie D, Martinez D, et al. A dual-responsive probe for detecting cellular hypoxia using (19)F magnetic resonance and fluorescence[J]. Chem Commun (Camb), 2019, 55(60): 8860-8863. DOI: 10.1039/c9cc00375d.
44
Tang X, Gong X, Li A, et al. Cascaded multiresponsive self-assembled (19)F MRI nanoprobes with redox-triggered activation and NIR-induced amplification[J]. Nano letters, 2020, 20(1): 363-371. DOI: 10.1021/acs.nanolett.9b04016.

PREV The quantification methods of the confounding effects in chemical exchange saturation transfer
NEXT The study of white matter micro-structures mediating onset age and the severity of depressive disorder based on DTI
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn