Share:
Share this content in WeChat
X
Clinical Article
Study on cerebral perfusion changes in patients with Parkinson's disease with different motor subtypes by using arterial spin labeling technique
CHEN Hongri  YANG Wenrui  LI Qingrun  XU Yao  ZHANG Hongying 

Cite this article as: Chen HR, Yang WR, Li QR, et al. Study on cerebral perfusion changes in patients with Parkinson's disease with different motor subtypes by using arterial spin labeling technique[J]. Chin J Magn Reson Imaging, 2021, 12(8): 1-5, 10. DOI:10.12015/issn.1674-8034.2021.08.001.


[Abstract] Objective To analyze the changes of cerebral perfusion in Parkinson's disease (PD) patients with different motor subtypes and their similarities and differences. Materials andMethods Three-dimensional pseudo-continuous arterial spin labeling (3D-pCASL) data were collected from 26 patients with tremor dominant (TD) Parkinson's disease, 27 patients with postural instability/gait difficulty (PIGD) and 35 normal controls (NC). SPM based on MATLAB were used to data processing. Covariance analysis and double sample t test were used to detect the differences of local cerebral perfusion among the groups to observe cerebral perfusion changes and their differences in patients with different subtypes of PD. The cognitive function of the patients was evaluated with the MMSE score. Pearson correlation method was used to calculate the correlation between relative cerebral blood flow (rCBF) and clinical scores in different motor subtypes of PD.Results Compared with healthy controls, TD group showed increased perfusion in left parahippocampal gyrus, left fusiform gyrus, left precentral gyrus, left postcentral gyrus, bilateral thalamus, and bilateral cerebellum,while decreased perfusion in right temporal pole (middle and superior temporal gyrus),and right middle frontal gyrus (P<0.05); compared with healthy controls, PIGD group showed increased perfusion in left hippocampus, left parahippocampal gyrus, left fusiform gyrus, left precentral gyrus, left paracentral lobule and bilateral thalamus,while decreased perfusion in left inferior temporal gyrus, left superior marginal gyrus, and right middle frontal gyrus (P<0.05); compared with PIGD group, the TD group showed increased perfusion in right cerebellum and the left precentral perfusion was decreased (P<0.05). Additionally, rCBF values of the left precentral gyrus and right cerebellum 8 region was positively correlated with TD scores in the TD group (r=0.397, 0.541, P<0.05), and rCBF values was positively correlated with MMSE scores (r=0.411, P=0.04) in the PIGD group.Conclusions The cerebral perfusion patterns of PD patients with different motor subtypes were different, the perfusion changes of TD patients mainly existed in the brain areas associated with cerebello-thalamo-cortical (CTC) circuit, while the PIGD patients mainly existed in the striatal-thalamo-cortical (STC) circuit. The characteristic perfusion patterns of different motor subtypes of PD contribute to the pathophysiological mechanism exploration and the clinical classification diagnosis.
[Keywords] Parkinson's disease;resting tremor;postural instability gait difficulty;magnetic resonance imaging;arterial spin labeling

CHEN Hongri1, 2   YANG Wenrui1, 2   LI Qingrun1, 2   XU Yao2   ZHANG Hongying2*  

1 Dalian Medical University, Dalian 116044, China

2 Department of Imaging, North Jiangsu People's Hospital, Yangzhou 225001, China

Zhang HY, E-mail: zhying11@aliyun.com

Conflicts of interest   None.

ACKNOWLEDGMENTS This work was part of National Natural Science Foundation of China (No. 81471642).
Received  2021-01-27
Accepted  2021-05-31
DOI: 10.12015/issn.1674-8034.2021.08.001
Cite this article as: Chen HR, Yang WR, Li QR, et al. Study on cerebral perfusion changes in patients with Parkinson's disease with different motor subtypes by using arterial spin labeling technique[J]. Chin J Magn Reson Imaging, 2021, 12(8): 1-5, 10. DOI:10.12015/issn.1674-8034.2021.08.001.

1
Zhong LL, Song YQ, Cao H, et al. Non-motor symptoms in Parkinson′s disease patients with different motor types[J]. Chin J Gen Pract, 2018, 17: 56-59.
2
Rane S, Koh N, Oakley J, et al. Arterial spin labeling detects perfusion patterns related to motor symptoms in Parkinson's disease[J]. Parkinsonism Relat Disord, 2020, 76: 21-28. DOI: 10.1016/j.parkreldis.2020.05.014.
3
Riederer I, Bohn KP, Preibisch C, et al. Alzheimer disease and mild cognitive impairment: Integrated pulsed arterial spin-labeling MRI and F-FDG PET[J]. Radiology, 2018, 288(1): 198-206. DOI: 10.1148/radiol.2018170575.
4
Postuma RB, Berg D, Stern M, et al. MDS clinical diagnostic criteria for Parkinson's disease[J]. Movement Disord, 2015, 30(12): 1591-601. DOI: 10.1002/mds.26424.
5
Jankovic J, Mcdermott M, Carter J, et al. Variable expression of Parkinson's disease: a base-line analysis of the DATATOP cohort. The Parkinson study group[J]. Neurology, 1990, 40(10): 1529-1534. DOI: 10.1212/wnl.40.10.1529.
6
Soldozy S, Galindo J, Snyder H, et al. Clinical utility of arterial spin labeling imaging in disorders of the nervous system[J]. Neurosurgical Focus, 2019, 47(6): E5. DOI: 10.3171/2019.9.focus19567.
7
RPPWM Maas, Helmich RCG, van de Warrenburg BPC. The role of the cerebellum in degenerative ataxias and essential tremor: Insights from noninvasive modulation of cerebellar activity[J]. Movement Disord, 2020, 35(2): 215-227. DOI: 10.1002/mds.27919.
8
Riou A, Houvenaghel JF, Dondaine T, et al. Functional role of the cerebellum in Parkinson disease: A PET study[J]. Neurology, 2021, 96(23): e2874-e2884. DOI: 10.1212/wnl.0000000000012036.
9
Mure H, Hirano S, Tang CC, et al. Parkinson's disease tremor-related metabolic network: characterization, progression, and treatment effects[J]. NeuroImage, 2011, 54(2): 1244-1253. DOI: 10.1016/j.neuroimage.2010.09.028.
10
Cury RG, Fraix V, Castrioto A, et al. Thalamic deep brain stimulation for tremor in Parkinson disease, essential tremor, and dystonia[J]. Neurology, 2017, 89(13): 1416-1423. DOI: 10.1212/wnl.0000000000004295.
11
Mubeen AM, Ardekani B, Tagliati M, et al. Global and multi-focal changes in cerebral blood flow during subthalamic nucleus stimulation in Parkinson's disease[J]. J Cereb Blood Flow Metab, 2018, 38(4): 697-705. DOI: 10.1177/0271678x17705042.
12
Martinu K, Monchi O. Cortico-basal ganglia and cortico-cerebellar circuits in Parkinson's disease: pathophysiology or compensation?[J]. Behavioral Neurosci, 2013, 127(2): 222-236. DOI: 10.1037/a0031226.
13
Kahan J, Mancini L, Flandin G, et al. Deep brain stimulation has state- dependent effects on motor connectivity in Parkinson's disease[J]. Brain, 2019, 142(8): 2417-2431. DOI: 10.1093/brain/awz164.
14
Asanuma K, Tang C, Ma Y, et al. Network modulation in the treatment of Parkinson's disease[J]. Brain, 2006, 129: 2667-2678. DOI: 10.1093/brain/awl162.
15
Isaias IU, Marotta G, Hirano S, et al. Imaging essential tremor[J]. Movement Disord, 2010, 25(6): 679-686. DOI: 10.1002/mds.22870.
16
Wang M, Wang JW, Zhang KZ, et al. Alterations of brain activity in different motor subtypes of Parkinson disease based on regional homogeneity analysis[J]. Chin J Radiol, 2019, 53(9): 748-754.
17
Shen B, Pan Y, Jiang X, et al. Altered putamen and cerebellum connectivity among different subtypes of Parkinson's disease[J]. CNS Neurosci Therapeut, 2020, 26(2): 207-214. DOI: 10.1111/cns.13259.
18
Mirdamadi JL. Cerebellar role in Parkinson's disease[J]. J Neurophysiol, 2016, 116(3): 917-919. DOI: 10.1152/jn.01132.2015.
19
Ruppert MC, Greuel A, Freigang J, et al. The default mode network and cognition in Parkinson's disease: A multimodal resting-state network approach[J]. Hum Brain Mapp, 2021, 42(8): 2623-2641. DOI: 10.1002/hbm.25393.
20
Rossion B, Retter TL, Liu-Shuang J. Understanding human individuation of unfamiliar faces with oddball fast periodic visual stimulation and electroencephalography[J]. Eur J Neurosci, 2020, 52(10): 4283-4344. DOI: 10.1111/ejn.14865.
21
Alsop DC, Detre JA, Golay X, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia[J]. Magn Reson Med, 2015, 73(1): 102-116. DOI: 10.1002/mrm.25197.

PREV Current status of whole-body magnetic resonance imaging in prostate cancer
NEXT Correlation between 1H-MRS of frontal lobe white matter and cognitive function in mild cognitive impairment
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn