Share:
Share this content in WeChat
X
Clinical Article
The value of DCE-MRI texture multi-parameter combined analysis to predict the expression of P53 in the differential diagnosis of rectal cancer
LIU Yuhui  CHEN Anliang  WU Jingjun  LIU Tieli  DONG Wan  LIU Yunsong  ZHAO Ying  LIU Ailian 

Cite this article as: Liu YH, Chen AL, Wu JJ, et al. The value of DCE-MRI texture multi-parameter combined analysis to predict the expression of P53 in the differential diagnosis of rectal cancer[J]. Chin J Magn Reson Imaging, 2021, 12(8): 33-37, 74. DOI:10.12015/issn.1674-8034.2021.08.007.


[Abstract] Objective To explore the value of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) texture analysis in predicting the expression of P53 in patients with rectal cancer. Materials andMethods A retrospective collection of 91 patients with primary rectal cancer (50 cases in the P53 high expression group and 41 cases in the low expression group) who underwent DCE-MRI scan and had the results of P53 immunohistochemical detection. The post-processing images of Ktrans, Kep, Ve are acquired by GenIQ post-processing software and imported into ITK-SNAP software. Two observers use AK software to extract 12 texture feature parameters respectively, applying intra-group correlation coefficient ICC to test the consistency of the data, using independent sample t test or Mann-Whitney U test to compare two sets of texture parameters, using ROC curve to analyze the identification power of texture parameters. The Logistic regression analysis is used to analyze the efficiency of the combined texture feature parameters, and the difference between the single parameter model and the combined model and the single parameter model AUC is compared through the Delong test.Results The texture parameters of the P53 high expression group, Cluster ProminenceKtrans (23.00±50.84)×106, CorrelationKtrans (1.49±1.42)×10-2, InertiaKep (13.52±22.31)×104, are all larger than the low expression group Cluster ProminenceKtrans(4.89±5.92)×106 , CorrelationKtrans (0.16±0.17)×10-2, InertiaKep (50.52±61.27)×103, the differences were statistically significant (P<0.05), the AUC values are 0.712, 0.838, 0.638 respectively. The combination of P53 texture parameters with differences between the two groups has a higher diagnostic efficiency, with an AUC of 0.914, a sensitivity of 80%, and a specificity of 95%. After Delong test, there is a difference between the two groups of P53. The AUC of the texture parameter combined model is greater than that of the single parameter model, and the difference is statistically significant (P<0.05).Conclusions Texture feature parameters Cluster Prominence, Correlation, Inertia can predict the expression of rectal cancer P53 effectively, and the combined analysis of texture analysis feature parameters can achieve higher differential diagnosis performance.
[Keywords] rectal cancer;texture analysis;dynamic enhanced;magnetic resonance imaging;P53

LIU Yuhui1, 2   CHEN Anliang2   WU Jingjun2   LIU Tieli1   DONG Wan2   LIU Yunsong2   ZHAO Ying2   LIU Ailian1, 2*  

1 School of Medical Imaging, Dalian Medical University, Dalian 116044 China

2 Department of Radiology, the First Affiliated Hospital, Dalian Medical University, Dalian 116011, China

Liu AL, E-mail: cjr.liuailian@vip.163.com

Conflicts of interest   None.

Received  2021-04-07
Accepted  2021-05-24
DOI: 10.12015/issn.1674-8034.2021.08.007
Cite this article as: Liu YH, Chen AL, Wu JJ, et al. The value of DCE-MRI texture multi-parameter combined analysis to predict the expression of P53 in the differential diagnosis of rectal cancer[J]. Chin J Magn Reson Imaging, 2021, 12(8): 33-37, 74. DOI:10.12015/issn.1674-8034.2021.08.007.

1
Jonas MH, Annekathrin H, Alexey S. Histogram analysis of ADC in rectal cancer: associations with different histopathological findings including expression of EGFR, Hif1-alpha, VEGF, p53, PD1, and KI 67. A preliminary study[J]. Oncotarget, 2018, 9(26): 18510-18517. DOI: 10.18632/oncotarget.24905.
2
Ryuma T, Yasuo S, Shigeki N, et al. The utility of tumor marker combination, including serum P53 antibody, in colorectal cancer treatment[J]. Surg Today, 2017, 47(5): 636-642. DOI: 10.1007/s00595-016-1464-8.
3
Wang ZQ, Tao FX, Peng R, et al. Application value of DCE-MRI in predicting the effect of neoadjuvant radiotherapy and chemotherapy in advanced rectal cancer[J]. Chin J CT & MRI, 2020, 18(1): 137-139.
4
Palmisano A, Esposito A, Rancoita PMV, et al. Could perfusion heterogeneity at dynamic contrast-enhanced MRI be used to predict rectal cancer sensitivity to chemoradiotherapy?[J]. Clin Radiol, 2018, 73(10): 911. DOI: 10.1016/j.crad.2018.06.007.
5
Zhang GZ, Xu Q, Wang ZY, et al. p53 protein expression affected by TP53 polymorphism is associated with the biological behavior and prognosis of low rectal cancer[J]. Oncol Lett, 2019, 18(6): 6807-6821. DOI: 10.3892/ol.2019.10999.
6
Li L, Chen WC, Yan ZX, et al. Comparative analysis of amide proton transfer MRI and diffusion-weighted imaging in assessing p53 and Ki-67 expression of rectal adenocarcinoma[J]. J Magn Reson Imaging, 2020, 52(5): 1487-1496. DOI: 10.1002/jmri.27212.
7
Magda Z, Alessia C, Giovanni DP, et al. Acute radiation colitis after preoperative short-course radiotherapy for rectal cancer: A morphological, immunohistochemical and genetic study[J]. Cancers (Basel), 2020, 12(9): 2571. DOI: 10.3390/cancers12092571.
8
Sakarias W, Jenny B, Ericson LK, et al. Associations of beta-catenin alterations and MSI screening status with expression of key cell cycle regulating proteins and survival from colorectal cancer[J]. Diagn Pathol, 2013, 8(10): 10-23. DOI: 10.1186/1746-1596-8-10.
9
Lin MX, Wen ZF, Feng ZY, et al. Expression and significance of Bmi-1 and Ki67 in colorectal carcinoma tissues[J]. Ai Zheng, 2008, 27(12): 1321-1326.
10
Wu PQ, Liu ZY, He L, et al. The research status of the combination of imaging and big data[J]. Chin J Radiol, 2017, 51(7): 554-558.
11
Liu SL, Liu S, Ji CF, et al. Application of CT texture analysis in predicting histopathological characteristics of gastric cancers[J]. Eur Radiol, 2017, 27(12): 4951-4959. DOI: 10.1007/s00330-017-4881-1.
12
Sandrasegaran K, Lin YN, Asare-Sawiri M, et al. CT texture analysis of pancreatic cancer[J]. Eur Radiol, 2019, 29(2): 1067-1073. DOI: 10.1007/s00330-018-5662-1.
13
Scrima Andrew T, Lubner Meghan G, Jason AE, et al. Texture analysis of small renal cell carcinomas at MDCT for predicting relevant histologic and protein biomarkers[J]. Abdom Radiol (NY), 2019, 44(6): 1999-2008. DOI: 10.1007/s00261-018-1649-2.
14
Guo CG, Ren S, Chen X, et al. Pancreatic neuroendocrine tumor: prediction of the tumor grade using magnetic resonance imaging findings and texture analysis with 3-T magnetic resonance[J]. Cancer Manag Res, 2019, 11: 1933-1944. DOI: 10.2147/CMAR.S195376.
15
Darius K, Andrea K, Mirjam R, et al. Identification of high-risk atypical meningiomas according to semantic and radiomic features[J]. Cancers (Basel), 2020, 12(10): 2942. DOI: 10.3390/cancers12102942.
16
Guan XJ, Wang SZ, Kuang PD, et al. The usefulness of imaging quantification in discriminating non-calcified pulmonary hamartoma from adenocarcinoma[J]. Front Oncol, 2020, 10: 568069. DOI: 10.3389/fonc.2020.568069.
17
Philipp RC, Eva K, Michael E, et al. Role of computed tomography texture analysis using dual-energy-based bone marrow imaging for multiple myeloma characterization: comparison with histology and established serologic parameters[J]. Eur Radiol, 2021, 31(4): 2357-2367. DOI: 10.1007/s00330-020-07320-8.
18
Crimì F, Stramare R, Spolverato G, et al. T2-weighted, apparent diffusion coefficient and F-FDG PET histogram analysis of rectal cancer after preoperative chemoradiotherapy[J]. Tech Coloproctol, 2021, 25(5): 569-577. DOI: 10.1007/s10151-021-02440-9.
19
Zou HH, Yu J, Wei Y, et al. Response to neoadjuvant chemoradiotherapy for locally advanced rectum cancer: Texture analysis of dynamic contrast-enhanced MRI[J]. J Magn Reson Imaging, 2019, 49(3): 885-893. DOI: 10.3389/fonc.2020.568069.
20
Lu ZH, Wang L, Xia KJ, et al. Prediction of clinical pathologic prognostic factors for rectal adenocarcinoma: Volumetric texture analysis based on apparent diffusion coefficient maps[J]. J Med Syst, 2019, 43(12): 331-353. DOI: 10.1007/s10916-019-1464-5.
21
He XJ, Xiong H, Zhang HP, et al. Value of MRI texture analysis for predicting new Gleason grade group[J]. Br J Radiol, 2021, 94(1121): 20210005. DOI: 10.1259/bjr.20210005.

PREV Preliminary study on risk model of clinical and MRI features of recurrent acute pancreatitis
NEXT Predictive value of pelvic lymph node metastasis in patients with cervical cancer based on IVIM-DWI parameters and texture features of its primary lesion
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn