Share:
Share this content in WeChat
X
Clinical Article
Study on long-rage and short-rage functional connectivity strength of brain network hubs in patients with subcortical ischemic vascular disease
HUANG Jing  CHENG Runtian  LIU Xiaoshuang  LUO Tianyou 

Cite this article as: Huang J, Cheng RT, Liu XS, et al. Study on long-rage and short-rage functional connectivity strength of brain network hubs in patients with subcortical ischemic vascular disease[J]. Chin J Magn Reson Imaging, 2021, 12(11): 7-11. DOI:10.12015/issn.1674-8034.2021.11.002.


[Abstract] Objective To explore the characteristics of long-rage and short-rage functional connectivity strength (FCS) of brain network hubs in patients with subcortical ischemic vascular disease (SIVD).Materials and Methods: Thirty patients with SIVD and 22 normal controls (NC) were scanned with resting-state functional magnetic resonance imaging. Maps of long-rage, short-rage FCS and brain network hubs were obtained by calculation. The difference of the long-rage and short-rage FCS of brain network hubs between groups were compared and the relationship between difference and cognitive function scores were assessed.Results Brain network hubs were mainly distributed in cuneus lobe, precuneus lobe, lingual gyrus, middle cingulate gyrus, posterior cingulate gyrus, fusiform gyrus and calcarine. Compared with NC group, the long-rage and short-rage FCS values of the bilateral superior temporal gyrus, calcarine and the short-rage FCS values of the right insula decreased, the long-rage and short-rage FCS values of the right superior frontal gyrus and the long-rage FCS values in the right precuneus increased in SIVD group (all P<0.05). In SIVD group, the long-rage FCS values of the right superior temporal gyrus (r=0.438, P=0.022) and the short-rage FCS values of right insula (r=0.390, P=0.044) were correlated with cognitive function scores.Conclusions There are abnormal long-rage and short-rage FCS changes in some brain network hubs of patients with SIVD, especially in insula and superior temporal gyrus, which may help to reveal its neural mechanism.
[Keywords] subcortical ischemic vascular disease;resting-state functional magnetic resonance imaging;functional connectivity strength;brain network hub

HUANG Jing   CHENG Runtian   LIU Xiaoshuang   LUO Tianyou*  

Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China

Luo TY, E-mail: ltychy@sina.com

Conflicts of interest   None.

ACKNOWLEDGMENTS National Natural Science Foundation of China (No. 81671666).
Received  2021-06-30
Accepted  2021-09-24
DOI: 10.12015/issn.1674-8034.2021.11.002
Cite this article as: Huang J, Cheng RT, Liu XS, et al. Study on long-rage and short-rage functional connectivity strength of brain network hubs in patients with subcortical ischemic vascular disease[J]. Chin J Magn Reson Imaging, 2021, 12(11): 7-11. DOI:10.12015/issn.1674-8034.2021.11.002.

[1]
Du J, Xu Q. Neuroimaging studies on cognitive impairment due to cerebral small vessel disease[J]. Stroke Vasc Neurol, 2019, 4(2): 99-101. DOI: 10.1136/svn-2018-000209.
[2]
Wallin A, Roman GC, Esiri M, et al. Update on vascular cognitive impairment associated with subcortical small-vessel disease[J]. J Alzheimers Dis, 2018, 62(3): 1417-1441. DOI: 10.3233/JAD-170803.
[3]
Ye Q, Bai F. Contribution of diffusion, perfusion and functional mri to the disconnection hypothesis in subcortical vascular cognitive impairment[J]. Stroke Vasc Neurol, 2018, 3(3): 131-139. DOI: 10.1136/svn-2017-000080.
[4]
Smitha KA, Akhil Raja K, Arun KM, et al. Resting state fmri: a review on methods in resting state connectivity analysis and resting state networks[J]. Neuroradiol J, 2017, 30(4): 305-317. DOI: 10.1177/1971400917697342.
[5]
Chen Y, Yu CX. Static and dynamic functional connectivity analysis based on resting state functional magnetic resonance imaging and its progress[J]. Chin J Magn Reson Imaging, 2019, 10(8): 637-640. DOI: 10.12015/issn.1674-8034.2019.08.017.
[6]
Tomasi D, Volkow ND. Functional connectivity density mapping[J]. Proc Natl Acad Sci U S A, 2010, 107(21): 9885-9890. DOI: 10.1073/pnas.1001414107.
[7]
Song LM, Peng QM, Liu SW, et al. Changed hub and functional connectivity patterns of the posterior fusiform gyrus in chess experts[J]. Brain Imaging Behav, 2020, 14(3): 797-805. DOI: 10.1007/s11682-018-0020-0.
[8]
Hu YM, Liu XZ, Chen XJ, et al. Differences in the functional connectivity density of the brain between individuals with growth hormone deficiency and idiopathic short stature[J]. Psychoneuroendocrinology, 2019, 103(103): 67-75. DOI: 10.1016/j.psyneuen.2018.12.229.
[9]
Liang X, Zou QH, He Y, et al. Coupling of functional connectivity and regional cerebral blood flow reveals a physiological basis for network hubs of the human brain[J]. Proc Natl Acad Sci U S A, 2013, 110(5): 1929-1934. DOI: 10.1073/pnas.1214900110.
[10]
Crossley NA, Mechelli A, Scott J, et al. The hubs of the human connectome are generally implicated in the anatomy of brain disorders[J]. Brain, 2014, 137(Pt 8): 2382-2395. DOI: 10.1093/brain/awu132.
[11]
Palva S. The importance of hubs in large-scale networks[J]. Nat Hum Behav, 2018, 2(10): 724-725. DOI: 10.1038/s41562-018-0438-9.
[12]
Tomasi D, Volkow ND. Functional connectivity hubs in the human brain[J]. Neuroimage, 2011, 57(3): 908-917. DOI: 10.1016/j.neuroimage.2011.05.024.
[13]
Tuladhar AM, Lawrence A, Norris DG, et al. Disruption of rich club organisation in cerebral small vessel disease[J]. Hum Brain Mapp, 2017, 38(4): 1751-1766. DOI: 10.1002/hbm.23479.
[14]
Sang LQ, Liu C, Wang L, et al. Disrupted brain structural connectivity network in subcortical ischemic vascular cognitive impairment with no dementia[J]. Front Aging Neurosci, 2020, 12(12): 6. DOI: 10.3389/fnagi.2020.00006.
[15]
Gogolla N. The insular cortex[J]. Curr Biol, 2017, 27(12): R580-R586. DOI: 10.1016/j.cub.2017.05.010.
[16]
Menon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula function[J]. Brain Struct Funct, 2010, 214(5-6): 655-667. DOI: 10.1007/s00429-010-0262-0.
[17]
Zhou X, Hu XP, Zhang C, et al. Aberrant functional connectivity and structural atrophy in subcortical vascular cognitive impairment: relationship with cognitive impairments[J]. Front Aging Neurosci, 2016, 8(8): 14. DOI: 10.3389/fnagi.2016.00014.
[18]
Chen L, Song JR, Cheng RT, et al. Cortical thinning in the medial temporal lobe and precuneus is related to cognitive deficits in patients with subcortical ischemic vascular disease[J]. Front Aging Neurosci, 2020, 12(12): 614833. DOI: 10.3389/fnagi.2020.614833.
[19]
Liu CX, Shi L, Zhu WH, et al. Fiber connectivity density in cerebral small-vessel disease patients with mild cognitive impairment and cerebral small-vessel disease patients with normal cognition[J]. Front Neurosci, 2020, 14(14): 83. DOI: 10.3389/fnins.2020.00083.
[20]
Liu C, Li CM, Yin XT, et al. Abnormal intrinsic brain activity patterns in patients with subcortical ischemic vascular dementia[J]. PLoS One, 2014, 9(2): e87880. DOI: 10.1371/journal.pone.0087880.
[21]
Yi LY, Liang X, Liu DM, et al. Disrupted topological organization of resting-state functional brain network in subcortical vascular mild cognitive impairment[J]. CNS Neurosci Ther, 2015, 21(10): 846-854. DOI: 10.1111/cns.12424.
[22]
Kim HJ, Cha J, Lee JM, et al. Distinctive resting state network disruptions among alzheimer's disease, subcortical vascular dementia, and mixed dementia patients[J]. J Alzheimers Dis, 2016, 50(3): 709-718. DOI: 10.3233/JAD-150637.
[23]
Li CM, Zheng J, Wang J, et al. An fmri Stroop task study of prefrontal cortical function in normal aging, mild cognitive impairment, and alzheimer's disease[J]. Curr Alzheimer Res, 2009, 6(6): 525-530. DOI: 10.2174/156720509790147142.
[24]
Fei F, Jie B, Zhang DQ. Frequent and discriminative subnetwork mining for mild cognitive impairment classification[J]. Brain Connectivity, 2014, 4(5): 347-360. DOI: 10.1089/brain.2013.0214.
[25]
Thong JY, Du J, Ratnarajah N, et al. Abnormalities of cortical thickness, subcortical shapes, and white matter integrity in subcortical vascular cognitive impairment[J]. Hum Brain Mapp, 2014, 35(5): 2320-2332. DOI: 10.1002/hbm.22330.
[26]
Sang LQ, Chen L, Wang L, et al. Progressively disrupted brain functional connectivity network in subcortical ischemic vascular cognitive impairment patients[J]. Front Neurol, 2018, 9(9): 94. DOI: 10.3389/fneur.2018.00094.
[27]
Pascual B, Prieto E, Arbizu J, et al. Brain glucose metabolism in vascular white matter disease with dementia: Differentiation from alzheimer disease[J]. Stroke, 2010, 41(12): 2889-2893. DOI: 10.1161/STROKEAHA.110.591552.
[28]
Qin Q, Tang Y, Dou XJ, et al. Default mode network integrity changes contribute to cognitive deficits in subcortical vascular cognitive impairment, no dementia[J]. Brain Imaging Behav, 2021, 15(1): 255-265. DOI: 10.1007/s11682-019-00252-y.
[29]
Yi LY, Wang JH, Jia LF, et al. Structural and functional changes in subcortical vascular mild cognitive impairment: a combined voxel-based morphometry and resting-state fmri study[J]. PLoS One, 2012, 7(9): e44758. DOI: 10.1371/journal.pone.0044758.
[30]
Feng MM, Zhang YQ, Liu Y, et al. White matter structural network analysis to differentiate alzheimer's disease and subcortical ischemic vascular dementia[J]. Front Aging Neurosci, 2021, 13(13): 650377. DOI: 10.3389/fnagi.2021.650377.
[31]
Schulz M, Malherbe C, Cheng B, et al. Functional connectivity changes in cerebral small vessel disease-a systematic review of the resting-state mri literature[J]. BMC Med, 2021, 19(1): 103. DOI: 10.1186/s12916-021-01962-1.

PREV Diagnostic value of texture analysis based on diffusion tensor imaging in Parkinson,s disease
NEXT Study on plaque characteristics of basilar artery with mild and severe curvature based on HR-MRI
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn