Share:
Share this content in WeChat
X
Review
Research progress of brain magnetic resonance imaging in patients with obstructive sleep apnea hypopnea syndrome
XUE Qi  GUO Lantian  ZHANG Jingyue 

Cite this article as: Xue Q, Guo LT, Zhang JY. Research progress of brain magnetic resonance imaging in patients with obstructive sleep apnea hypopnea syndrome[J]. Chin J Magn Reson Imaging, 2021, 12(11): 97-100. DOI:10.12015/issn.1674-8034.2021.11.024.


[Abstract] As a kind of common sleep disorders, obstructive sleep apnea hypopnea syndrome (OSAHS) may cause multi-system injury especially the central nervous system and seriously affect the prognosis of patients. The main clinical manifestations of OSAHS are fragmented sleep and chronic intermittent hypoxia. The application and research progress about magnetic resonance quantitative technology of brain injury in OSAHS patients were described, so as to improve the further understanding of the disease, provide objective basis for clinical diagnosis, guide clinical intervention as soon as possible, and reduce various complications.
[Keywords] obstructive sleep apnea hypopnea syndrome;magnetic resonance imaging;central nervous system injury;cognitive function;artificial intelligence

XUE Qi1, 2   GUO Lantian1, 2*   ZHANG Jingyue1, 2  

1 Department of Radiology, Affiliated Hospital of Binzhou Medical College, Binzhou 256603, China

2 School of Medical Imaging, Binzhou Medical University, Yantai 264003, China

Guo LT, E-mail: byfyglt@163.com

Conflicts of interest   None.

Received  2021-04-21
Accepted  2021-08-06
DOI: 10.12015/issn.1674-8034.2021.11.024
Cite this article as: Xue Q, Guo LT, Zhang JY. Research progress of brain magnetic resonance imaging in patients with obstructive sleep apnea hypopnea syndrome[J]. Chin J Magn Reson Imaging, 2021, 12(11): 97-100. DOI:10.12015/issn.1674-8034.2021.11.024.

[1]
Sharples LD, Clutterbuck-James AL, Glover MJ, et al. Meta-analysis of randomised controlled trials of oral mandibular advancement devices and continuous positive airway pressure for obstructive sleep apnoea-hypopnoea[J]. Sleep Med Rev, 2016, 27: 108-124. DOI: 10.1016/j.smrv.2015.05.003.
[2]
Lim DC, Pack AI. Obstructive sleep apnea and cognitive impairment: addressing the blood-brain barrier[J]. Sleep Med Rev, 2014, 18(1): 35-48. DOI: 10.1016/j.smrv.2012.12.003.
[3]
Koo DL, Nam H, Thomas RJ, et al. Sleep disturbances as a risk factor for stroke[J]. J Stroke, 2018, 20(1): 12-32. DOI: 10.5853/jos.2017.02887.
[4]
Dimitrova M, Genov K. Global cognitive performance and assessment of memory functions in obstructive sleep apnea[J]. Folia Med (Plovdiv), 2020, 62(3): 539-545. DOI: 10.3897/folmed.62.e49694.
[5]
Gozal D. CrossTalk proposal: the intermittent hypoxia attending severe obstructive sleep apnoea does lead to alterations in brain structure and function[J]. J Physiol, 2013, 591(2): 379-381. DOI: 10.1113/jphysiol.2012.241216.
[6]
Owen JE, BenediktsdÓttir B, Gislason T, et al. Neuropathological investigation of cell layer thickness and myelination in the hippocampus of people with obstructive sleep apnea[J]. Sleep, 2019, 42(1): 199. DOI: 10.1093/sleep/zsy199.
[7]
Shi YH, Xu P, Song KY, et.al. Pathological changes and expression of caspase-3 in hippocampus of rats with obstructive sleep apnea syndrome[J]. Chin J Nerv Ment Dis, 2013, 39(8): 496-499. DOI: 10.3969/j.issn.1002-0152.2013.08.011.
[8]
Ashburner J, Friston KJ. Voxel-based morphometry--the methods[J]. Neuroimage, 2000, 11(6Pt 1): 805-821. DOI: 10.1006/nimg.2000.0582.
[9]
Huang X, Tang S, Lyu XJ, et al. Structural and functional brain alterations in obstructive sleep apnea: a multimodal meta-analysis[J]. Sleep Med, 2019, 54: 195-204. DOI: 10.1016/j.sleep.2018.09.025.
[10]
Li HJ, Xin HZ, Yu HH, et.al. Correlation between gray matter volume change and cognitive function in male severe obstructive sleep apnea: a voxel-based morphology-DARTEL study[J]. Chin J Med Imaging, 2020, 28(12): 918-922. DOI: 10.3969/j.issn.1005-5185.2020.12.009.
[11]
Macey PM, Haris N, Kumar R, et al. Obstructive sleep apnea and cortical thickness in females and males[J]. PLoS One, 2018, 13(3): e0193854. DOI: 10.1371/journal.pone.0193854.
[12]
Tahmasian M, Rosenzweig I, Eickhoff SB, et al. Structural and functional neural adaptations in obstructive sleep apnea: an activation likelihood estimation meta-analysis[J]. Neurosci Biobehav Rev, 2016, 65: 142-156. DOI: 10.1016/j.neubiorev.2016.03.026.
[13]
Macey PM, Prasad JP, Ogren JA, et al. Sex-specific hippocampus volume changes in obstructive sleep apnea[J]. Neuroimage Clin, 2018, 20: 305-317. DOI: 10.1016/j.nicl.2018.07.027.
[14]
Musso MF, Lindsey HM, Wilde EA, et al. Volumetric brain magnetic resonance imaging analysis in children with obstructive sleep apnea[J]. Int J Pediatr Otorhinolaryngol, 2020, 138: 110369. DOI: 10.1016/j.ijporl.2020.110369.
[15]
Baril AA, Gagnon K, Brayet P, et al. Gray matter hypertrophy and thickening with obstructive sleep apnea in middle-aged and older adults[J]. Am J Respir Crit Care Med, 2017, 195(11): 1509-1518. DOI: 10.1164/rccm.201606-1271OC.
[16]
Lin WC, Huang CC, Chen HL, et al. Longitudinal brain structural alterations and systemic inflammation in obstructive sleep apnea before and after surgical treatment[J]. J Transl Med, 2016, 14(1): 139. DOI: 10.1186/s12967-016-0887-8.
[17]
Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging[J]. Biophys J, 1994, 66(1): 259-267. DOI: 10.1016/s0006-3495(94)80775-1.
[18]
Lee MH, Yun CH, Min A, et al. Altered structural brain network resulting from white matter injury in obstructive sleep apnea[J]. Sleep, 2019, 42(9): DOI:10.1093/sleep/zsz120.
[19]
Zhang B, Zhu DM, Zhao W, et al. Selective microstructural integrity impairments of the anterior corpus callosum are associated with cognitive deficits in obstructive sleep apnea[J]. Brain Behav, 2019, 9(12): e01482. DOI: 10.1002/brb3.1482.
[20]
Koo DL, Kim HR, Kim H, et al. White matter tract-specific alterations in male patients with untreated obstructive sleep apnea are associated with worse cognitive function[J]. Sleep, 2020, 43(3): zsz247. DOI: 10.1093/sleep/zsz247.
[21]
Chen HL, Lu CH, Lin HC, et al. White matter damage and systemic inflammation in obstructive sleep apnea[J]. Sleep, 2015, 38(3): 361-370. DOI: 10.5665/sleep.4490.
[22]
Xiong Y, Zhou XJ, Nisi RA, et al. Brain white matter changes in CPAP-treated obstructive sleep apnea patients with residual sleepiness[J]. J Magn Reson Imaging, 2017, 45(5): 1371-1378. DOI: 10.1002/jmri.25463.
[23]
Chen HL, Huang CC, Lin HC, et al. White matter alteration and autonomic impairment in obstructive sleep apnea[J]. J Clin Sleep Med, 2020, 16(2): 293-302. DOI: 10.5664/jcsm.8186.
[24]
Macey PM, Kumar R, Yan-Go FL, et al. Sex differences in white matter alterations accompanying obstructive sleep apnea[J]. Sleep, 2012, 35(12): 1603-1613. DOI: 10.5665/sleep.2228.
[25]
Maresky HS, Shpirer I, Klar MM, et al. Continuous positive airway pressure alters brain microstructure and perfusion patterns in patients with obstructive sleep apnea[J]. Sleep Med, 2019, 57: 61-69. DOI: 10.1016/j.sleep.2018.12.027.
[26]
Steven AJ, Zhuo J, Melhem ER. Diffusion kurtosis imaging: an emerging technique for evaluating the microstructural environment of the brain[J]. AJR Am J Roentgenol, 2014, 202(1): W26-33. DOI: 10.2214/AJR.13.11365.
[27]
Jensen JH, Helpern JA, Ramani A, et al. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging[J]. Magn Reson Med, 2005, 53(6): 1432-1440. DOI: 10.1002/mrm.20508.
[28]
Vyas S, Singh P, Khandelwal N, et al. Evaluation of cerebral microstructural changes in adult patients with obstructive sleep apnea by MR diffusion kurtosis imaging using a whole-brain atlas[J]. Indian J Radiol Imaging, 2019, 29(4): 356-363. DOI: 10.4103/ijri.IJRI_326_19.
[29]
Hui ES, Cheung MM, Qi L, et al. Towards better MR characterization of neural tissues using directional diffusion kurtosis analysis[J]. Neuroimage, 2008, 42(1): 122-134. DOI: 10.1016/j.neuroimage.2008.04.237.
[30]
Rostampour M, Noori K, Heidari M, et al. White matter alterations in patients with obstructive sleep apnea: a systematic review of diffusion MRI studies[J]. Sleep Med, 2020, 75: 236-245. DOI: 10.1016/j.sleep.2020.06.024.
[31]
Tummala S, Roy B, Vig R, et al. Non-gaussian diffusion imaging shows brain myelin and axonal changes in obstructive sleep apnea[J]. J Comput Assist Tomogr, 2017, 41(2): 181-189. DOI: 10.1097/RCT.0000000000000537.
[32]
Tummala S, Palomares J, Kang DW, et al. Global and regional brain non-gaussian diffusion changes in newly diagnosed patients with obstructive sleep apnea[J]. Sleep, 2016, 39(1): 51-57. DOI: 10.5665/sleep.5316.
[33]
Wolff SD, Balaban RS. Magnetization transfer imaging: practical aspects and clinical applications[J]. Radiology, 1994, 192(3): 593-599. DOI: 10.1148/radiology.192.3.8058919.
[34]
Grossman RI, Gomori JM, Ramer KN, et al. Magnetization transfer: theory and clinical applications in neuroradiology[J]. Radiographics, 1994, 14(2): 279-290. DOI: 10.1148/radiographics.14.2.8190954.
[35]
Tummala S, Roy B, Park B, et al. Associations between brain white matter integrity and disease severity in obstructive sleep apnea[J]. J Neurosci Res, 2016, 94(10): 915-923. DOI: 10.1002/jnr.23788.
[36]
Wolf RL, Detre JA. Clinical neuroimaging using arterial spin-labeled perfusion magnetic resonance imaging[J]. Neurotherapeutics, 2007, 4(3): 346-359. DOI: 10.1016/j.nurt.2007.04.005.
[37]
Telischak NA, Detre JA, Zaharchuk G. Arterial spin labeling MRI: clinical applications in the brain[J]. J Magn Reson Imaging, 2015, 41(5): 1165-1180. DOI: 10.1002/jmri.24751.
[38]
Mao XF, Zhao YY, Yao LD, et.al. Study of three dimensiona arterial spin labeling in white matter perfusion change and cognitive impairment of patients with severe OSAS[J]. Chin Gen Pract, 2019, 17(6): 1004-1007. DOI: 10.16766/j.cnki.issn.1674-4152.000848.
[39]
Chen HL, Lin HC, Lu CH, et al. Systemic inflammation and alterations to cerebral blood flow in obstructive sleep apnea[J]. J Sleep Res, 2017, 26(6): 789-798. DOI: 10.1111/jsr.12553.
[40]
Nie S, Peng DC, Gong HH, et al. Resting cerebral blood flow alteration in severe obstructive sleep apnoea: an arterial spin labelling perfusion fMRI study[J]. Sleep Breath, 2017, 21(2): 487-495. DOI: 10.1007/s11325-017-1474-9.
[41]
Ponsaing LB, Lindberg U, Rostrup E, et al. Impaired cerebrovascular reactivity in obstructive sleep apnea: a case-control study[J]. Sleep Med, 2018, 43: 7-13. DOI: 10.1016/j.sleep.2017.10.010.
[42]
Smitha KA, Akhil Raja K, Arun KM, et al. Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks[J]. Neuroradiol J, 2017, 30(4): 305-317. DOI: 10.1177/1971400917697342.
[43]
Yu HH, Chen LT, Li HJ, et al. Abnormal resting-state functional connectivity of amygdala subregions in patients with obstructive sleep apnea[J]. Neuropsychiatr Dis Treat, 2019, 15: 977-987. DOI: 10.2147/ndt.s191441.
[44]
Song XP, Roy B, Kang DW, et al. Altered resting-state hippocampal and caudate functional networks in patients with obstructive sleep apnea[J]. Brain Behav, 2018, 8(6): e00994. DOI: 10.1002/brb3.994.
[45]
Park B, Palomares JA, Woo MA, et al. Aberrant insular functional network integrity in patients with obstructive sleep apnea[J]. Sleep, 2016, 39(5): 989-1000. DOI: 10.5665/sleep.5738.
[46]
Chen LT, Fan XL, Li HJ, et al. Aberrant brain functional connectome in patients with obstructive sleep apnea[J]. Neuropsychiatr Dis Treat, 2018, 14: 1059-1070. DOI: 10.2147/ndt.s161085.
[47]
Chen LT, Fan XL, Li HJ, et al. Topological reorganization of the default mode network in severe male obstructive sleep apnea[J]. Front Neurol, 2018, 9: 363. DOI: 10.3389/fneur.2018.00363.
[48]
Chang YT, Chen YC, Chen YL, et al. Functional connectivity in default mode network correlates with severity of hypoxemia in obstructive sleep apnea[J]. Brain Behav, 2020, 10(12): e01889. DOI: 10.1002/brb3.1889.
[49]
Chen LT, Fan XL, Li HJ, et al. Disrupted small-world brain functional network topology in male patients with severe obstructive sleep apnea revealed by resting-state fMRI[J]. Neuropsychiatr Dis Treat, 2017, 13: 1471-1482. DOI: 10.2147/ndt.s135426.
[50]
Li HJ, Dai XJ, Gong HH, et al. Aberrant spontaneous low-frequency brain activity in male patients with severe obstructive sleep apnea revealed by resting-state functional MRI[J]. Neuropsychiatr Dis Treat, 2015, 11: 207-214. DOI: 10.2147/ndt.s73730.
[51]
Qin ZY, Bao HH, Kang DJ, et al. ReHo and ALFF studies in the brain of patients with obstructive sleep apnea hypopnea syndrome[J]. Chin J Magn Reson Imaging, 2018, 9(09): 648-654. DOI: 10.12015/issn.1674-8034.2018.09.002.
[52]
Zhou L, Shan XX, Peng YT, et al. Reduced regional homogeneity and neurocognitive impairment in patients with moderate-to-severe obstructive sleep apnea[J]. Sleep Med, 2020, 75: 418-427. DOI: 10.1016/j.sleep.2020.09.009.
[53]
Thiel S, Lettau F, Rejmer P, et al. Effects of short-term continuous positive airway pressure withdrawal on cerebral vascular reactivity measured by blood oxygen level-dependent magnetic resonance imaging in obstructive sleep apnoea: a randomised controlled trial[J]. Eur Respir J, 2019, 53(2): 1801854. DOI: 10.1183/13993003.01854-2018.
[54]
Tran T, Ross B, Lin A. Magnetic resonance spectroscopy in neurological diagnosis[J]. Neurol Clin, 2009, 27(1): 21-60, xiii. DOI: 10.1016/j.ncl.2008.09.007.
[55]
McLean MA, Cross JJ. Magnetic resonance spectroscopy: principles and applications in neurosurgery[J]. Br J Neurosurg, 2009, 23(1): 5-13. DOI: 10.1080/02688690802491673.
[56]
Kang J, Tian ZS, Li MX. Changes in insular cortex metabolites in patients with obstructive sleep apnea syndrome[J]. Neuroreport, 2018, 29(12): 981-986. DOI: 10.1097/WNR.0000000000001065.
[57]
Huang ZQ, You H, Xie YP, et al. Influence of cognitive dysfunction in adult patients with obstructive sleep apnea-hypopneasyndrome and clinical value study of magnetic resonance spectroscopy of hippocampus region[J]. J Apoplexy Nerv Dis, 2017, 34(10): 876-879. DOI: 10.19845/j.cnki.zfysjjbzz.2017.10.003.
[58]
Zhang WW, Zhao LP, Xie YP, et al. Correlation of hippocampal MRS metabolites and cognitive function in patients with obstructive sleep apnea hypopnea syndrome[J]. Chin J Med Imaging Technol, 2019, 35(8): 1175-1179. DOI: 10.13929/j.1003-3289.201811134.
[59]
Mu XN, Wang B, Liu QY, et al. Preliminary using multivoxel 1H-MRS to reveals the effect of CPAP treatment in moderate and severe OSAHS patients[J]. Chin J Magn Reson Imaging, 2016, 7(02): 102-106. DOI: 10.3969/issn.1674-8034.2016.02.004.

PREV Magnetic resonance research progress in amnestic mild cognitive impairment
NEXT Advances in brain magnetic resonance imaging of postpartum depression
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn