Share:
Share this content in WeChat
X
Clinical Article
Value of T2* mapping MRI in quantitative assessment of diabetic macular edema with retinal hemorrhage
WANG Yehong  SHAO Juwei  LI Lei  LI Jianbo  ZHANG Liwei  XIONG Yuxin  YANG Ying  YANG Mengwei  SU Wei 

Cite this article as: Wang YH, Shao JW, Li L, et al. Value of T2* mapping MRI in quantitative assessment of diabetic macular edema with retinal hemorrhage[J]. Chin J Magn Reson Imaging, 2022, 13(11): 66-70, 81. DOI:10.12015/issn.1674-8034.2022.11.012.


[Abstract] Objective To investigate the value and feasibility of T2* mapping MRI in evaluating diabetic macular edema (DME).Materials and Methods Thirty patients (36 eyes) with DME (patient group) in the Affiliated Hospital of Yunnan University from October 2020 to December 2021 were prospectively enrolled,including a group of 26 eyes with retinal hemorrhage and a group of 10 eyes without retinal hemorrhage. Twenty healthy volunteers (39 eyes) were collected as the control group. Axial T2WI, coronal T2WI, sagittal T1WI and axial T2* mapping MRI were performed between the two groups. Six regions of interest (ROIs) were drawn at the retina region: optic disc sector, macula sector, the attachment point of lateral rectus muscle eye ring (temporal side), the attachment point of medial rectus muscle eye ring (nasal side), the midpoint of optic disc sector and temporal side (MOT), the midpoint of optic disc sector and nasal side (MON) and 6 ROIs were drawn in front of the retina (ROI size 1 mm2). Statistical analyses among multiple groups were conducted using one-way analysis of variance and the Kruskal-Wallis test.Results The T2* value of the retina region (optic disc sector, macula sector, temporal side, nasal side, MON, MOT) and those in front of the retina (macula sector, temporal side, nasal side, MON, MOT) was statistically significant between the retinal hemorrhage group and the control group (P<0.05). The T2* value of the retina region (optic disc sector, macula sector, MON, MOT) and those in front of the retina (macula sector, temporal side, nasal side, MOT) was statistically significant between the retinal hemorrhage group and the group without retinal hemorrhage (P<0.05). The T2* value of the retina region (optic disc sector, temporal side) was statistically significant between the group without retinal hemorrhage and the control group (P<0.05).Conclusions T2* mapping MRI can sensitively and quantitatively assess the retinal hemorrhage of DME, and has a high value in diagnosis, monitoring progression and therapeutic effect of DME.
[Keywords] diabetic macular edema;retinal hemorrhage;magnetic resonance imaging;functional magnetic resonance imaging;T2* mapping;quantitative assessment

WANG Yehong1   SHAO Juwei1   LI Lei1   LI Jianbo1   ZHANG Liwei2   XIONG Yuxin3   YANG Ying3   YANG Mengwei1   SU Wei1*  

1 Department of Radiology, the Affiliated Hospital of Yunnan University, Kunming 650021, China

2 Department of Ophthalmology, the Affiliated Hospital of Yunnan University, Kunming 650021, China

3 Department of Endocrinology, the Affiliated Hospital of Yunnan University, Kunming 650021, China.

Su W, E-mail: 13619634911@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS 2020 China International Medical Foundation Image Research Fund (No. Z-2014-07-2003-12).
Received  2022-06-09
Accepted  2022-11-04
DOI: 10.12015/issn.1674-8034.2022.11.012
Cite this article as: Wang YH, Shao JW, Li L, et al. Value of T2* mapping MRI in quantitative assessment of diabetic macular edema with retinal hemorrhage[J]. Chin J Magn Reson Imaging, 2022, 13(11): 66-70, 81. DOI:10.12015/issn.1674-8034.2022.11.012.

[1]
Antonetti DA, Klein R, Gardner TW. Diabetic retinopathy[J]. N Engl J Med, 2012, 366(13): 1227-1239. DOI: 10.1056/NEJMra1005073.
[2]
Lechner J, O'Leary OE, Stitt AW. The pathology associated with diabetic retinopathy[J]. Vis Res, 2017, 139: 7-14. DOI: 10.1016/j.visres.2017.04.003.
[3]
Santos FM, Mesquita J, Castro-de-Sousa JP, et al. Vitreous Humor Proteome: Targeting Oxidative Stress, Inflammation, and Neurodegeneration in Vitreoretinal Diseases[J/OL]. Antioxidants, 2022, 11(3) [2022-10-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8944522/pdf. DOI: 10.3390/antiox11030505.
[4]
Wei QL, Zhang T, Jiang R, et al. Vitreous fibronectin and fibrinogen expression increased in eyes with proliferative diabetic retinopathy after intravitreal anti-VEGF therapy[J]. Invest Ophthalmol Vis Sci, 2017, 58(13): 5783-5791. DOI: 10.1167/iovs.17-22345.
[5]
Bush AM, Sandino CM, Ramachandran S, et al. Rosette trajectories enable ungated, motion-robust, simultaneous cardiac and liver T2 * iron assessment[J]. J Magn Reson Imaging, 2020, 52(6): 1688-1698. DOI: 10.1002/jmri.27196.
[6]
Zhou H, Wei Y, An D, et al. Myocardial Iron Deficiency Quantification and Effective Cardiac Iron Management Strategy Exploration evaluated by Cardiac T2* Mapping in End-Stage Renal Disease Patients[J/OL]. Acad Radiol, 2021, 28(4): e101-e109 [2022-10-13]. https://www.ncbi.nlm.nih.gov/PMID:34983186/pdf. DOI: 10.1016/j.acra.2020.03.010.
[7]
Rao S, Tseng SY, Pednekar A, et al. Myocardial Parametric Mapping by Cardiac Magnetic Resonance Imaging in Pediatric Cardiology and Congenital Heart Disease[J/OL]. Circ-Cardiovasc Imag, 2022, 15(1): e012242 [2022-10-13]. https://www.ncbi.nlm.nih.gov/PMID:34983186. DOI: 10.1161/CIRCIMAGING.120.012242.
[8]
Yang C, You YL, Han FG, et al. Quantitative study of iron deposition of whole liver by MR T2* mapping sequence[J]. China Med Equip, 2019, 16(8): 12-15. DOI: 10.3969/J.ISSN.1672-8270.2019.08.004.
[9]
Huang JW, Cheng ZL, Yang QH, et al. MRI-T2* technique in quantitative analysis of myocardium, liver and pancreas iron deposition inβ-thalassemia major and the correlations with glucose metabolism[J]. Chin J Med Imaging Technol, 2021(4): 557-561. DOI: 10.13929/j.issn.1003-3289.2021.04.018.
[10]
Zhao KX, Pohlmann A, Feng QJ, et al. Physiological system analysis of the kidney by high-temporal-resolution T2 monitoring of an oxygenation step response[J]. Magn Reson Med, 2021, 85(1): 334-345. DOI: 10.1002/mrm.28399.
[11]
Wu LM, Chen XX, Xuan HQ, et al. Feasibility and preliminary experience of quantitative T2* mapping at 3.0 T for detection and assessment of aggressiveness of prostate cancer[J]. Acad Radiol, 2014, 21(8): 1020-1026. DOI: 10.1016/j.acra.2014.04.007.
[12]
Tang H, Suo ST, Lu Q, et al. T2 and T2* mapping of skeletal muscle in lower extremities of healthy volunteers and patients with peripheral arterial occlusive disease[J]. Chin Comput Med Imaging, 2019, 25(4): 390-395. DOI: 10.19627/j.cnki.cn31-1700/th.2019.04.013.
[13]
Tsai PH, Wong CC, Chan WP. Radial T2* mapping reveals early meniscal abnormalities in patients with knee osteoarthritis[J]. Eur Radiol, 2022, 32(8): 5642-5649. DOI: 10.1007/s00330-022-08641-6.
[14]
Benedikter C, Abrar DB, Konieczny M, et al. Patterns of Intervertebral Disk Alteration in Asymptomatic Elite Rowers: A T2* MRI Mapping Study[J/OL]. Orthop J Sports Med, 2022, 10(4) [2022-10-31. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9019338/pdf. DOI: 10.1177/23259671221088572.
[15]
Ye Y, Lyu J, Sun W, et al. A multi-dimensional integration (MDI) strategy for MR T2* mapping[J/OL]. NMR Biomed, 2021, 34(7): e4529 [2022-10-13]. https://www.ncbi.nlm.nih.gov/PMID:33982808. DOI: 10.1002/nbm.4529.
[16]
Takahashi N, Yoshino O, Hayashida E, et al. Quantitative analysis of ovarian cysts and tumors by using T2 star mapping[J]. J Obstet Gynaecol Res, 2020, 46(1): 140-146. DOI: 10.1111/jog.14157.
[17]
Ma J, Xu X, Wang S, et al. Quantitative assessment of early Type 2 diabetic cataracts using T1, T2-mapping techniques[J]. Brit J Radiol, 2019, 92(1103) [2022-10-31]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC31398062/pdf. DOI: 10.1259/bjr.20181030.
[18]
Xu QG, Chen QH, Xian JF, et al. Characteristic findings of dynamic contrast enhancement magnetic resonance imaging in proliferative diabetic retinopathy[J]. Chin J Magn Reson Imaging, 2012, 3(5): 347-351. DOI: 10.3969/j.issn.1674-8034.2012.05.006.
[19]
Grzybowski A, Brona P, Lim G, et al. Correction to: artificial intelligence for diabetic retinopathy screening: a review[J]. Eye (Lond), 2020, 34(3): 604. DOI: 10.1038/s41433-019-0728-0.
[20]
Wang SR, Zhang YL, Lei SB, et al. Performance of deep neural network-based artificial intelligence method in diabetic retinopathy screening: a systematic review and meta-analysis of diagnostic test accuracy[J]. Eur J Endocrinol, 2020, 183(1): 41-49. DOI: 10.1530/EJE-19-0968.
[21]
Sun KF. Al analysis of the efficacy of combination of traditional Chinese and western medicine in the treatment of DR[D]. Jinan: Shandong University of Traditional Chinese Medicine, 2021.
[22]
Gilbert MJ, Sun JK. Artificial Intelligence in the assessment of diabetic retinopathy from fundus photographs[J]. Semin Ophthalmol, 2020, 35(7/8): 325-332. DOI: 10.1080/08820538.2020.1855358.
[23]
Ming S, Xie KP, Lei X, et al. Evaluation of a novel artificial intelligence-based screening system for diabetic retinopathy in community of China: a real-world study[J]. Int Ophthalmol, 2021, 41(4): 1291-1299. DOI: 10.1007/s10792-020-01685-x.
[24]
Ogier AC, Bustin A, Cochet H, et al. The Road Toward Reproducibility of Parametric Mapping of the Heart: A Technical Review[J/OL]. Front Cardiovasc Med, 2022, 9: 876475 [2022-10-13]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9120534/pdf. DOI: 10.3389/FCVM.2022.876475.
[25]
Chen Q, Chen J, Chen J, et al. Feasibility of using T2*mapping to quantitatively evaluate ischemia? reperfusion injury[J]. Chin J Radiol, 2019, 53(11): 1012-1015. DOI: 10.3760/cma.j.issn.1005-1201.2019.11.015.
[26]
Ferré-Vallverdú M, Sánchez-Lacuesta E, Plaza-López D, et al. Prognostic value and clinical predictors of intramyocardial hemorrhage measured by CMR T2* sequences in STEMI[J]. Int J Cardiovasc Imaging, 2021, 37(5): 1735-1744. DOI: 10.1007/s10554-020-02142-7.
[27]
Pavon AG, Georgiopoulos G, Vincenti G, et al. Head-to-head comparison of multiple cardiovascular magnetic resonance techniques for the detection and quantification of intramyocardial haemorrhage in patients with ST-elevation myocardial infarction[J]. Eur Radiol, 2021, 31(3): 1245-1256. DOI: 10.1007/s00330-020-07254-1.
[28]
Ibanez B, Aletras AH, Arai AE, et al. Cardiac MRI endpoints in myocardial infarction experimental and clinical trials[J]. J Am Coll Cardiol, 2019, 74(2): 238-256. DOI: 10.1016/j.jacc.2019.05.024.
[29]
Messroghli DR, Moon JC, Ferreira VM, et al. Correction to: clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI)[J]. J Cardiovasc Magn Reson, 2018, 20(1): 9. DOI: 10.1186/s12968-017-0408-9.
[30]
Triadyaksa P, Oudkerk M, Sijens PE. Cardiac T2 * mapping: techniques and clinical applications[J]. J Magn Reson Imaging, 2020, 52(5): 1340-1351. DOI: 10.1002/jmri.27023.
[31]
Chen YY, Ren DY, Guan XM, et al. Quantification of myocardial hemorrhage using T2* cardiovascular magnetic resonance at 1.5T with ex-vivo validation[J]. J Cardiovasc Magn Reson, 2021, 23(1): 104. DOI: 10.1186/s12968-021-00779-4.

PREV Application value of FOCUS diffusion weighted imaging in the diagnosis of microprolactinomas
NEXT Predictive value of Gd-EOB-DTPA enhanced MRI features and hepatobiliary phase histogram parameters in response to transarterial chemoembolization for hepatocellular carcinoma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn