Share:
Share this content in WeChat
X
Original Article
Combing DCE-MRI and fatty acid metabolomics to evaluate the function of bone marrow endothelial progenitor cells in diabetic rabbits with critical limb ischemia
FEI Ziyan  GAO Yufan  LI Liang  LIU Changsheng  ZHA Yunfei 

Cite this article as: FEI Z Y, GAO Y F, LI L, et al. Combing DCE-MRI and fatty acid metabolomics to evaluate the function of bone marrow endothelial progenitor cells in diabetic rabbits with critical limb ischemia.[J]. Chin J Magn Reson Imaging, 2024, 15(3): 143-150. DOI:10.12015/issn.1674-8034.2024.03.023.


[Abstract] Objective To evaluate bone marrow endothelial progenitor cells (BMEPCs) functions of proximal femur in diabetes mellitus (DM) combined with critical limb ischemia (CLI) rabbits via dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) microvascular permeabilities and fatty acid metabonomics.Materials and Methods Eighteen rabbits were randomly selected from 36 male New Zealand big ear white rabbits to build DM model rabbits by intravenous injection of alloxan. Among them, 12 DM rabbits were successfully modeled and 6 rabbits that failed to be modeled were euthanized. 12 DM rabbits and 12 non-DM rabbits underwent right femoral artery ligation as DM combined with CLI (DM+CLI) group and simple CLI group. In the two groups,10 rabbits in each group survived after surgery. Six non-DM rabbits underwent surgery to expose the right femoral artery without ligation as sham operation control (Control) group (n=6) and all survived. DCE-MRI examination of the right proximal femur was performed in each group at week 0 and 4 after operation. The number of peripheral blood endothelial progenitor cells and right proximal femur BMEPCs, migration and angiogenesis function of BMEPCs and bone marrow fatty acid liquid chromatography-mass spectrometry metabonomics were measured at week 4 after operation, as well as bone marrow microvessel density (MVD) calculated.Results Compared with CLI group and Control group, DM+CLI group presented higher Ktrans, Kep, Ve at week 4 after operation, while MVD of bone marrow decreased (P<0.05). In addition, the contents of palmitoleic acid, the ratio of monounsaturated fatty acid/polyunsaturated fatty acid and activity of stearoyl-CoA desaturase 1 index decreased (P<0.05) and elongase activity index increased (P<0.05). The abilities of mobilization, migration and angiogenesis of BMEPCs were impaired in DM+CLI group (P<0.05). At week 4 after operation, the Ktrans, Kep and Ve of right proximal femur bone marrow, the related indexes of bone marrow fatty acid anabolism were positively correlated with BMEPCs migration and angiogenesis functions (P<0.05). Correlation analysis of DM+CLI group and CLI group was performed, and the mobilization ability of BMEPCs was negatively correlated with Ktrans, Kep and Ve.Conclusions It is feasible to evaluate BMEPCs functions in DM+CLI rabbits combining DCE-MRI with fatty acid metabonomics, which can provide visual imaging evidence for the pathophysiological mechanism for lipid regulation therapy to improve functions of BMEPCs and prevent amputation.
[Keywords] diabetes mellitus;critical limb ischemia;endothelial progenitor cells;dynamic contrast enhanced magnetic resonance imaging;metabonomics;magnetic resonance imaging

FEI Ziyan   GAO Yufan   LI Liang   LIU Changsheng   ZHA Yunfei*  

Department of Radiology, Renmin Hospital of Wuhan University, Wuhan 430060, China

Corresponding author: ZHA Y F, E-mail: zhayunfei999@ 126.com

Conflicts of interest   None.

Received  2023-10-06
Accepted  2024-02-18
DOI: 10.12015/issn.1674-8034.2024.03.023
Cite this article as: FEI Z Y, GAO Y F, LI L, et al. Combing DCE-MRI and fatty acid metabolomics to evaluate the function of bone marrow endothelial progenitor cells in diabetic rabbits with critical limb ischemia.[J]. Chin J Magn Reson Imaging, 2024, 15(3): 143-150. DOI:10.12015/issn.1674-8034.2024.03.023.

[1]
ABOYANS V, RICCO J B, BARTELINK M L E L, et al. 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS)[J]. Eur Heart J, 2018, 39(9): 763-816. DOI: 10.1093/eurheartj/ehx095.
[2]
CREAGER M A, MATSUSHITA K, ARYA S, et al. Reducing nontraumatic lower-extremity amputations by 20% by 2030: time to get to our feet: a policy statement from the American heart association[J/OL]. Circulation, 2021, 143(17): e875-e891 [2023-10-11]. https://pubmed.ncbi.nlm.nih.gov/33761757/. DOI: 10.1161/CIR.0000000000000967.
[3]
GU Y, RAMPIN A, ALVINO V V, et al. Cell therapy for critical limb ischemia: advantages, limitations, and new perspectives for treatment of patients with critical diabetic vasculopathy[J/OL]. Curr Diab Rep, 2021, 21(3): 11 [2023-10-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7925447/. DOI: 10.1007/s11892-021-01378-4.
[4]
YING A F, TANG T Y, JIN A Z, et al. Diabetes and other vascular risk factors in association with the risk of lower extremity amputation in chronic limb-threatening ischemia: a prospective cohort study[J/OL]. Cardiovasc Diabetol, 2022, 21(1): 7 [2023-10-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8742323/. DOI: 10.1186/s12933-021-01441-0.
[5]
SHI H Y, WANG A H, XU Z R. Evaluation and management of diabetic foot with chronic limb-threatening ischaemia[J]. Chin J Diabetes Mellit, 2020, 12(12): 954-957. DOI: 10.3760/cma.j.cn115791-20200507-00277.
[6]
WANG K, SUN S Y, ZHANG G G, et al. CXCR7 agonist TC14012 improves angiogenic function of endothelial progenitor cells via activating akt/eNOS pathway and promotes ischemic angiogenesis in diabetic limb ischemia[J]. Cardiovasc Drugs Ther, 2023, 37(5): 849-863. DOI: 10.1007/s10557-022-07337-9.
[7]
KUO C S, CHEN C Y, HUANG H L, et al. Melatonin improves ischemia-induced circulation recovery impairment in mice with streptozotocin-induced diabetes by improving the endothelial progenitor cells functioning[J/OL]. Int J Mol Sci, 2022, 23(17): 9839 [2023-10-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9456213/. DOI: 10.3390/ijms23179839.
[8]
SANTILLÁN-CORTEZ D, VERA-GÓMEZ E, HERNÁNDEZ-PATRICIO A, et al. Endothelial progenitor cells may be related to major amputation after angioplasty in patients with critical limb ischemia[J/OL]. Cells, 2023, 12(4): 584 [2023-10-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9954311/. DOI: 10.3390/cells12040584.
[9]
BARĆ P, ANTKIEWICZ M, ŚLIWA B, et al. Double VEGF/HGF gene therapy in critical limb ischemia complicated by diabetes mellitus[J]. J Cardiovasc Transl Res, 2021, 14(3): 409-415. DOI: 10.1007/s12265-020-10066-9.
[10]
YAN X Q, SU Y, FAN X, et al. Liraglutide improves the angiogenic capability of EPC and promotes ischemic angiogenesis in mice under diabetic conditions through an Nrf2-dependent mechanism[J/OL]. Cells, 2022, 11(23): 3821 [2023-10-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9736458/. DOI: 10.3390/cells11233821.
[11]
DUBSKÝ M, HUSÁKOVÁ J, BEM R, et al. Comparison of the impact of autologous cell therapy and conservative standard treatment on tissue oxygen supply and course of the diabetic foot in patients with chronic limb-threatening ischemia: a randomized controlled trial[J/OL]. Front Endocrinol, 2022, 13: 888809 [2023-10-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9464922/. DOI: 10.3389/fendo.2022.888809.
[12]
GREMMELS H, VAN RHIJN-BROUWER F C C, PAPAZOVA D A, et al. Exhaustion of the bone marrow progenitor cell reserve is associated with major events in severe limb ischemia[J]. Angiogenesis, 2019, 22(3): 411-420. DOI: 10.1007/s10456-019-09666-0.
[13]
XU Y S, MURPHY A J, FLEETWOOD A J. Hematopoietic progenitors and the bone marrow niche shape the inflammatory response and contribute to chronic disease[J/OL]. Int J Mol Sci, 2022, 23(4): 2234 [2023-10-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8879433/. DOI: 10.3390/ijms23042234.
[14]
ZHU Q, LIU X Y, ZHU Q Y, et al. N-acetylcysteine enhances the recovery of ischemic limb in type-2 diabetic mice[J/OL]. Antioxidants, 2022, 11(6): 1097 [2023-10-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9219773/. DOI: 10.3390/antiox11061097.
[15]
AZCONA J A, TANG S, BERRY E, et al. Neutrophil-derived myeloperoxidase and hypochlorous acid critically contribute to 20-hydroxyeicosatetraenoic acid increases that drive postischemic angiogenesis[J]. J Pharmacol Exp Ther, 2022, 381(3): 204-216. DOI: 10.1124/jpet.121.001036.
[16]
MALLICK R, DUTTAROY A K. Modulation of endothelium function by fatty acids[J]. Mol Cell Biochem, 2022, 477(1): 15-38. DOI: 10.1007/s11010-021-04260-9.
[17]
ONTORIA-OVIEDO I, AMARO-PRELLEZO E, CASTELLANO D, et al. Topical administration of a marine oil rich in pro-resolving lipid mediators accelerates wound healing in diabetic db/db mice through angiogenesis and macrophage polarization[J/OL]. Int J Mol Sci, 2022, 23(17): 9918 [2023-10-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9456080/. DOI: 10.3390/ijms23179918.
[18]
CHIU S C, CHAO C Y, CHIANG E P I, et al. N-3 polyunsaturated fatty acids alleviate high glucose-mediated dysfunction of endothelial progenitor cells and prevent ischemic injuries both in vitro and in vivo[J]. J Nutr Biochem, 2017, 42: 172-181. DOI: 10.1016/j.jnutbio.2017.01.009.
[19]
HE H, SONG M N, TIAN Z R, et al. Multiparametric MRI model with synthetic MRI, DWI multi-quantitative parameters, and differential sub-sampling with Cartesian ordering enables BI-RADS 4 lesions diagnosis with high accuracy[J]. Front Oncol, 2023, 13: 1180131 [2024-01-28]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10797086/. DOI: 10.3389/fonc.2023.1180131.
[20]
HU L, ZHA Y F, WANG L, et al. Quantitative evaluation of vertebral microvascular permeability and fat fraction in alloxan-induced diabetic rabbits[J]. Radiology, 2018, 287(1): 128-136. DOI: 10.1148/radiol.2017170760.
[21]
YANG L, ZHA Y F, CHEN P P, et al. DCE-MRI and texture analysis based on the Ktrans map to evaluate the microvascular changes in the bone marrow of diabetic rabbit models with severe limb ischemia[J]. Radiol Pract, 2020, 35(8): 978-984. DOI: 10.13609/j.cnki.1000-0313.2020.08.006.
[22]
KHATTRI R B, KIM K, THOME T, et al. Unique metabolomic profile of skeletal muscle in chronic limb threatening ischemia[J/OL]. J Clin Med, 2021, 10(3): 548 [2023-10-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867254/. DOI: 10.3390/jcm10030548.
[23]
SOBCZAK A I S, PITT S J, SMITH T K, et al. Lipidomic profiling of plasma free fatty acids in type-1 diabetes highlights specific changes in lipid metabolism[J/OL]. Biochim Biophys Acta Mol Cell Biol Lipids, 2021, 1866(1): 158823 [2023-10-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7867254/. DOI: 10.1016/j.bbalip.2020.158823.
[24]
CHEN L, TANG S, ZHANG F F, et al. CYP4A/20-HETE regulates ischemia-induced neovascularization via its actions on endothelial progenitor and preexisting endothelial cells[J]. Am J Physiol Heart Circ Physiol, 2019, 316(6): H1468-H1479. DOI: 10.1152/ajpheart.00690.2018.
[25]
WANG Y, HU L, YAN Y C, et al. Integration of metabolomics with texture analysis based on DCE-MRI Ktrans map of early bone marrow mi-crovascular changes in alloxan-induced diabetic rabbits[J]. Radiol Pract, 2022, 37(11): 1337-1342. DOI: 10.13609/j.cnki.1000-0313.2022.11.001.
[26]
DAI Q X, FAN X, MENG X, et al. FGF21 promotes ischaemic angiogenesis and endothelial progenitor cells function under diabetic conditions in an AMPK/NAD+-dependent manner[J]. J Cell Mol Med, 2021, 25(6): 3091-3102. DOI: 10.1111/jcmm.16369.
[27]
CAI Y, ZANG G Y, HUANG Y, et al. Advances in neovascularization after diabetic ischemia[J]. World J Diabetes, 2022, 13(11): 926-939. DOI: 10.4239/wjd.v13.i11.926.
[28]
WANG K, DAI X Z, HE J H, et al. Endothelial overexpression of metallothionein prevents diabetes-induced impairment in ischemia angiogenesis through preservation of HIF-1α/SDF-1/VEGF signaling in endothelial progenitor cells[J]. Diabetes, 2020, 69(8): 1779-1792. DOI: 10.2337/db19-0829.
[29]
WU Z H, ZHENG X T, MENG L Y, et al. α-Tocopherol, especially α-tocopherol phosphate, exerts antiapoptotic and angiogenic effects on rat bone marrow-derived endothelial progenitor cells under high-glucose and hypoxia conditions[J]. J Vasc Surg, 2018, 67(4): 1263-1273. DOI: 10.1016/j.jvs.2017.02.051.
[30]
YANG Q, LI L, ZHA Y F, et al. Microvascular permeability and texture analysis of the skeletal muscle of diabetic rabbits with critical limb ischaemia based on DCE-MRI[J/OL]. Front Endocrinol, 2022, 13: 783163 [2023-10-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8894257/. DOI: 10.3389/fendo.2022.783163.
[31]
SYU J N, LIN H Y, HUANG T Y, et al. Docosahexaenoic acid alleviates trimethylamine-N-oxide-mediated impairment of neovascularization in human endothelial progenitor cells[J/OL]. Nutrients, 2023, 15(9): 2190 [2023-10-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10180856/. DOI: 10.3390/nu15092190.
[32]
HAN Y, YAN J, LI Z Y, et al. Cyclic stretch promotes vascular homing of endothelial progenitor cells via Acsl1 regulation of mitochondrial fatty acid oxidation[J/OL]. Proc Natl Acad Sci U S A, 2023, 120(6): e2219630120 [2023-10-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963562/. DOI: 10.1073/pnas.2219630120.
[33]
WEECH M, ALTOWAIJRI H, MAYNERIS-PERXACHS J, et al. Replacement of dietary saturated fat with unsaturated fats increases numbers of circulating endothelial progenitor cells and decreases numbers of microparticles: findings from the randomized, controlled Dietary Intervention and VAScular function (DIVAS) study[J]. Am J Clin Nutr, 2018, 107(6): 876-882. DOI: 10.1093/ajcn/nqy018.
[34]
CASAS F, FOURET G, LECOMTE J, et al. Skeletal muscle expression of p43, a truncated thyroid hormone receptor α, affects lipid composition and metabolism[J]. J Bioenerg Biomembr, 2018, 50(1): 71-79. DOI: 10.1007/s10863-018-9743-2.
[35]
DAS U N. "cell membrane theory of senescence" and the role of bioactive lipids in aging, and aging associated diseases and their therapeutic implications[J/OL]. Biomolecules, 2021, 11(2): 241 [2023-10-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7914625/. DOI: 10.3390/biom11020241.
[36]
DOBOSZ A M, JANIKIEWICZ J, KROGULEC E, et al. Inhibition of stearoyl-CoA desaturase 1 in the mouse impairs pancreatic islet morphogenesis and promotes loss of β-cell identity and α-cell expansion in the mature pancreas[J/OL]. Mol Metab, 2023, 67: 101659 [2023-10-11]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9801219/. DOI: 10.1016/j.molmet.2022.101659.
[37]
SAMOVSKI D, JACOME-SOSA M, ABUMRAD N A. Fatty acid transport and signaling: mechanisms and physiological implications[J]. Annu Rev Physiol, 2023, 85: 317-337. DOI: 10.1146/annurev-physiol-032122-030352.

PREV 3.0 T multifrequency magnetic resonance elastography of the kidney: Regional variation and physiological effects on renal stiffness
NEXT Value in EH diagnosis of PPI and HYDROPS of 3D CUBE FLAIR based on inner ear magnetic resonace imaing with gadolinium enhancement
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn