Share:
Share this content in WeChat
X
Review
Advances of fMRI in human brain language
MA Laiyang  LIU Guangyao  ZHANG Pengfei  WANG Jun  MA Yurong  ZOU Jie  ZHANG Jing 

Cite this article as: Ma LY, Liu GY, Zhang PF, et al. Advances of fMRI in human brain language[J]. Chin J Magn Reson Imaging, 2021, 12(4): 89-92. DOI:10.12015/issn.1674-8034.2021.04.022.


[Abstract] The processing mechanism of human brain language is complex and involves multiple fields such as movement, sensation and cognition, especially the emergence of multilingual system has attracted wide attention of scientists. In recent years, with the rapid development of science and technology, the technology for studying the language functions of the brain has become increasingly widespread. The technology of fMRI provides an important basis for exploring the possible mechanism of language occurrence and the relationship between bilingualism, multilingualism and neural network. The purpose of this article is to review the recent fMRI findings in the localization of human brain language functional areas, language lateralization, brain function of aphasia, bilingualism and multilingualism.
[Keywords] functional magnetic resonance imaging;brain language;functional area;lateralization;bilingualism

MA Laiyang   LIU Guangyao   ZHANG Pengfei   WANG Jun   MA Yurong   ZOU Jie   ZHANG Jing*  

Department of Magnetic Resonance, the Lanzhou University Second Hospital, Lanzhou 730030, China

Zhang J, E-mail: lztong2001@163.com

Conflicts of interest   None.

This work was part of Talent Innovation and Entrepreneurship Project of Lanzhou City (No. 2016-RC-53).
Received  2020-08-20
Accepted  2020-11-18
DOI: 10.12015/issn.1674-8034.2021.04.022
Cite this article as: Ma LY, Liu GY, Zhang PF, et al. Advances of fMRI in human brain language[J]. Chin J Magn Reson Imaging, 2021, 12(4): 89-92. DOI:10.12015/issn.1674-8034.2021.04.022.

1
Oh A, Duerden EG, Pang EW. The role of the insula in speech and language processing[J]. Brain & Language, 2014, 135: 96-103. DOI: 10.1016/j.bandl.2014.06.003.
2
Tremblay P, Dick AS. Broca and wernicke are dead, or moving past the classic model of language neurobiology[J]. Brain & Language, 2016, 162: 60-71. DOI: 10.1016/j.bandl.2016.08.004.
3
Geschwind N. The organization of language and the brain[J]. Science, 1970, 170(3961): 940-944. DOI: 10.1007/978-94-010-2093-0_21.
4
Luria AR. Two basic kinds of aphasic disorders[J]. Linguistics, 1973, 11(115): 57-66. DOI: 10.1515/ling.1973.11.115.57.
5
Thompson-Schill SL. Neuroimaging studies of semantic memory: inferring "how" from "where"[J]. Neuropsychologia, 2003, 41(3): 280-292. DOI: 10.1016/s0028-3932(02)00161-6.
6
Booth JR, Burman DD, Meyer JR, et al. Functional anatomy of intra and cross-modal lexical tasks[J]. NeuroImage, 2002, 16(1): 7-22. DOI: 10.1006/nimg.2002.1081.
7
Tan LH, Spinks Ja Fau-Feng C-M, Feng Cm Fau-Siok WT, et al. Neural systems of second language reading are shaped by native language[J]. Human Brain Mapping, 2003, 18(3): 158-166. DOI: 10.1002/hbm.10089.
8
Xi Y, Liu L, Hao G, et al. Research of cerebral activation in Uygur-speaking and Chinese-speaking participants during verb generation task with functional magnetic resonance imaging[J]. Medicine, 2017, 96(30): e7460. DOI: 10.1097/MD.0000000000007460.
9
Xi Y, Liu L, Hao G, et al. Research of cerebral activation in Uygur-speaking and Chinese-speaking participants during verb generation task with functional magnetic resonance imaging[J]. Medicine, 2017, 96(30): e7460. DOI: 10.1097/MD.0000000000007460.
10
Booth JR, Wood L, Lu D, et al. The role of the basal ganglia and cerebellum in language processing[J]. Brain Res, 2007, 1133(1): 136-144. DOI: 10.1016/j.brainres.2006.11.074.
11
Chen SHA, Desmond JE. Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks[J]. Neuroimage, 2005, 24(2): 332-338. DOI: 10.1016/j.neuroimage.2004.08.032.
12
Willem JM. A history of psycholinguistics[M]. Oxford Univ Press, 2013. DOI: 10.1093/acprof:oso/9780199653669.001.0001.
13
Fedorenko E, Thompson-Schill SL. Reworking the language network[J]. Trends in Cognitive ences, 2014, 18(3): 120-126. DOI: 10.1016/j.tics.2013.12.006.
14
Corballis D, Michael C. Left brain, right brain: facts and fantasies[J]. PLoS Biology, 2014, 12(1): e1001767. DOI: 10.1371/journal.pbio.1001767.
15
Tzourio-Mazoyer N, Joliot M, Marie D, et al. Variation in homotopic areas' activity and inter-hemispheric intrinsic connectivity with type of language lateralization: an FMRI study of covert sentence generation in 297 healthy volunteers[J]. Brain Structure & Function, 2016, 221(5): 2735-2753. DOI: 10.1007/s00429-015-1068-x.
16
Vigneau M, Beaucousin V, Hervé Pierre-Yves, et al. What is right-hemisphere contribution to phonological, lexico-semantic, and sentence processing? Insights from a meta-analysis[J]. Neuroimage, 2011, 54(1): 577-593. DOI: 10.1016/j.neuroimage.2010.07.036.
17
Raja Beharelle A, Dick AS, Josse G, et al. Left hemisphere regions are critical for language in the face of early left focal brain injury[J]. Brain A J Neurology, 2010, 133(Pt 6): 1707. DOI: 10.1093/brain/awq104.
18
Nardo D, Holland R, Leff AP, et al. Less is more: neural mechanisms underlying anomia treatment in chronic aphasic patients[J]. Brain A J Neurology, 2017, 140(11): 3039-3054. DOI: 10.1093/brain/awx234.
19
Andrea GV, Lorca-Puls DL, Hope TMH, et al. How right hemisphere damage after stroke can impair speech comprehension[J]. Brain, 2018(12): 12. DOI: 10.1093/brain/awy270.
20
Balaev V, Petrushevsky A, Martynova O. Changes in functional connectivity of default mode network with auditory and right frontoparietal networks in poststroke aphasia[J]. Brain Connectivity, 2016, 6(9): 714-723. DOI: 10.1089/brain.
21
Allendorfer JB, Kissela BM, Holland SK, et al. Different patterns of language activation in post-stroke aphasia are detected by overt and covert versions of the verb generation fMRI task[J]. Med Sci Monit, 2012, 18(3): CR135-CR147. DOI: 10.12659/MSM.882518.
22
Rosen HJ, Petersen SE, Linenweber MR, et al. Neural correlates of recovery from aphasia after damage to left inferior frontal cortex[J]. Neurology, 2000, 55(12): 1883-1894. DOI: 10.1140/epjd/e2008-00026-2.
23
Ojemann GA, Whitaker HA. The bilingual brain[J]. JAMA Neurology, 1978, 35(7): 409-412. DOI: 10.1001/archneur.1978.00500310011002.
24
Tham WWP, Liow SJR, Rajapakse JC, et al. Phonological processing in Chinese-English bilingual biscriptals: an fMRI study[J]. Neuroimage, 2005, 28(3): 579-587. DOI: 10.1016/j.neuroimage.2005.06.057.
25
Illes J, Francis WS, Desmond JE, et al. Convergent cortical representation of semantic processing in bilinguals[J]. Brain & Language, 1999, 70(3): 347-363. DOI: 10.1006/brln.1999.2186.
26
Berken JA, Chai X, Chen JK, et al. Effects of early and late bilingualism on resting-state functional connectivity[J]. J Neuroence, 2016, 36(4): 1165-1172. DOI: 10.1523/JNEUROSCI.1960-15.2016.
27
Liu X, Tu L, Chen X, et al. Dynamic language network in early and late cantonese-mandarin bilinguals[J]. Front Psychol, 2020, 11: 1189. DOI: 10.3389/fpsyg.2020.01189.eCollection2020.
28
Costa A, Núria SG. How does the bilingual experience sculpt the brain?[J]. Nature Reviews Neuroscience, 2014, 15(5): 336-345. DOI: 10.1038/nrn3709.
29
Grundy JG, Anderson JAE, Bialystok E. Neural correlates of cognitive processing in monolinguals and bilinguals[J]. Ann N Y Acad, 2017, 1396(1): 183-201. DOI: 10.1111/nyas.13333.
30
Li L, Abutalebi J, Emmorey K, et al. How bilingualism protects the brain from aging: Insights from bimodal bilinguals[J]. Human Brain Mapping, 2017, 38(8): 4109-4124. DOI: 10.1002/hbm.23652.
31
Olulade OA, Jamal NI, Koo DS, et al. Neuroanatomical evidence in support of the bilingual advantage theory[J]. Cerebral Cortex, 2016, 26(7): 3196-204. DOI: 10.1093/cercor/bhv152.
32
Burgaleta M, Sanjuán Ana, Ventura N, et al. Bilingualism at the core of the brain. Structural differences between bilinguals and monolinguals revealed by subcortical shape analysis[J]. Neuroimage, 2016, 125: 437-445. DOI: 10.1016/j.neuroimage.2015.09.073.
33
Frank MJ. Hold your horses: A dynamic computational role for the subthalamic nucleus in decision making[J]. Neural Networks, 2006, 19(8): 1120-1136. DOI: 10.1016/j.neunet.2006.03.006.
34
Felton A, Azquez DV, Ramos-Nunez AI, et al. Bilingualism influences structural indices of interhemisphericorganization[J]. Neurolinguistics, 2017, 42: 1-11. DOI: 10.1016/j.jneuroling.2016.10.004.
35
DeLuca V, Rothman J, Bialystok E, et al. Redefining bilingualism as a spectrum of experiences that differentially affects brain structure and function[J]. Proc Natl Acad Sci U S A, 2019, 116(15): 7565-7574. DOI: 10.1073/pnas.1811513116.
36
Hämäläinen S, Sairanen V, Leminen A, et al. Bilingualism modulates the white matter structure of language-related pathways[J]. Neuroimage, 2017, 152: 249-257. DOI: 10.1016/j.neuroimage.2017.02.081.
37
Mitsuhashi T, Sugano H, Asano K, et al. Functional MRI and structural connectome analysis of language networks in Japanese-English bilinguals[J]. Neuroence, 2020, 431: 17-24. DOI: 10.1016/j.neuroscience.2020.01.030.
38
Ellen B. The bilingual adaptation: How minds accommodate experience[J]. Psychological Bulletin, 2017, 143(3): 233-262. DOI: 10.1037/bul0000099.
39
Van der Linden L, Van de Putte E, Woumans E, et al. Does extreme language control training improve cognitive control? A comparison of professional interpreters, L2 teachers and monolinguals[J]. Front Psychol, 2018, 9: 1998. DOI: 10.3389/fpsyg.2018.01998.
40
Bialystok E, Craik FIM, Freedman M. Bilingualism as a protection against the onset of symptoms of dementia[J]. Neuropsychologia, 2007, 45(2): 459-464. DOI: 10.1016/j.neuropsychologia.2006.10.009.
41
Víctor C, Lidon MM, Marco C, et al. A cross-sectional and longitudinal study on the protective effect of bilingualism against dementia using brain atrophy and cognitive measures[J]. Alzheimers Res Ther, 2020, 12(1): 11. DOI: 10.1186/s13195-020-0581-1.
42
Paap KR, Johnson HA, Sawi O. Bilingual advantages in executive functioning either do not exist or are restricted to very specific and undetermined circumstances[J]. Cortex, 2015, 69: 265-278. DOI: 10.1016/j.cortex.2015.04.014.
43
Paap KR, Myuz HA, Anders RT, et al. No compelling evidence for a bilingual advantage in switching or that frequent language switching reduces switch cost[J]. J Cognitive Psychology, 2017, 29(2): 1-24. DOI: 10.1080/20445911.2016.1248436.
44
Rosselli M, Ardila A, Lalwani LN, et al. The effect of language proficiency on executive functions in balanced and unbalanced Spanish-English bilinguals[J]. Bilingualism Language & Cognition, 2016, 19(3): 489-503. DOI: 10.1017/S1366728915000309.

PREV Research progress and application of multimodal functional magnetic resonance imaging in vestibular migraine
NEXT Imaging analysis of prognostic evaluation of cerebral venous and sinus thrombosis
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn