Share:
Share this content in WeChat
X
Review
Research progress on the effect of neuroimaging markers of cerebral small vessel disease on stroke
ZHENG Wenqiao  WANG Xiaochun 

Cite this article as: Zheng WQ, Wang XC. Research progress on the effect of neuroimaging markers of cerebral small vessel disease on stroke[J]. Chin J Magn Reson Imaging, 2021, 12(4): 96-99. DOI:10.12015/issn.1674-8034.2021.04.024.


[Abstract] Cerebral small vessel disease (CSVD) belongs to cerebrovascular diseases which primarily affect the perforating arterioles, capillaries and venules, though they have multiple pathogenesis and etiologies, they are characterized with similar neuroimaging markers. These neuroimaging makers are not only the predictors of increased risk of stroke, they also associated with increased risk of stroke recurrence, worse clinical outcomes and poor life quality. In this paper, the neuroimaging markers of CSVD and their effects on the prognosis of stroke will be reviewed, so as to guide the clinical practice to minimize the adverse effects of CSVD on the occurrence, development, treatment and prognosis of stroke.
[Keywords] cerebral small vessel disease;neuroimaging markers;stroke;magnetic resonance imaging

ZHENG Wenqiao1   WANG Xiaochun2*  

1 College of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China

2 Department of Radiology, the First Hospital of Shanxi Medical University, Taiyuan 030001, China

Wang XC, E-mail: 2010xiaochun@163.com

Conflicts of interest   None.

This work was part of National Natural Science Foundation of China (No. 81971592) and the Key Research and the Development Projects of Shanxi Province (No. 201903D321189).
Received  2021-01-14
Accepted  2021-01-29
DOI: 10.12015/issn.1674-8034.2021.04.024
Cite this article as: Zheng WQ, Wang XC. Research progress on the effect of neuroimaging markers of cerebral small vessel disease on stroke[J]. Chin J Magn Reson Imaging, 2021, 12(4): 96-99. DOI:10.12015/issn.1674-8034.2021.04.024.

1
Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration[J]. The Lancet Neurology, 2013, 12(8): 822-838. DOI: 10.1016/S1474-4422(13)70124-8.
2
Huang YN. Consensus on diagnosis and treatment of cerebral small vessel diseases in China[J]. Chin J Neurol, 2015, 48(10): 838-844. DOI: 10.3760/cma.j.issn.1006-7876.2015.10.004.
3
Pasi M, Cordonnier C. Clinical relevance of cerebral small vessel diseases[J]. Stroke, 2020, 51(1): 47-53. DOI: 10.1161/STROKEAHA.119.024148.
4
Chen X, Wang J, Shan Y, et al. Cerebral small vessel disease: neuroimaging markers and clinical implication[J]. J Neurology, 2019, 266(10): 2347-2362. DOI: 10.1007/s00415-018-9077-3.
5
Guan S, Xu R, Liu J, et al. Progress in diagnosis and treatment of cerebral small vessel disease[J]. Med Recapitul, 2019, 25(23): 4696- 4701. DOI: 10.3969/j.issn.1006-2084.2019.23.019.
6
Hong YJ, Kim CM, Kim JE, et al. Regional amyloid burden and lacune in pure subcortical vascular cognitive impairment[J]. Neurobiol Aging, 2017, 55: 20-26. DOI: 10.1016/j.neurobiolaging.2017.03.010.
7
Van Leijsen EMC, Bergkamp MI, Van Uden IWM, et al. Progression of white matter hyperintensities preceded by heterogeneous decline of microstructural integrity[J]. Stroke, 2018, 49(6): 1386-1393. DOI: 10.1161/STROKEAHA.118.020980.
8
Adams HHH, Hilal S, Schwingenschuh P, et al. A priori collaboration in population imaging: The Uniform Neuro-Imaging of Virchow-Robin Spaces Enlargement consortium[J]. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring, 2015, 1(4): 513-520. DOI: 10.1016/j.dadm.2015.10.004.
9
Shams S, Granberg T, Martola J, et al. Cerebral microbleeds topography and cerebrospinal fluid biomarkers in cognitive impairment[J]. J Cereb Blood Flow Metab, 2017, 37(3): 1006-1013. DOI: 10.1177/0271678X16649401.
10
Rensma SP, van Sloten TT, Launer LJ, et al. Cerebral small vessel disease and risk of incident stroke, dementia and depression, and all-cause mortality: A systematic review and meta-analysis[J]. Neurosci Biobehav Rev, 2018, 90:164-173. DOI: 10.1016/j.neubiorev.2018.04.003.
11
Staals J, Makin SD, Doubal FN, et al. Stroke subtype, vascular risk factors, and total MRI brain small-vessel disease burden[J]. Neurology, 2014, 83(14): 1228-1234. DOI: 10.1212/WNL.0000000000000837.
12
Gupta A, Giambrone AE, Gialdini G, et al. Silent brain infarction and risk of future stroke: a systematic review and meta-analysis[J]. Stroke, 2016, 47(3): 719-725. DOI: 10.1161/STROKEAHA.115.011889.
13
Debette S, Schilling S, Duperron MG, et al. Clinical significance of magnetic resonance imaging markers of vascular brain injury: a systematic review and meta-analysis[J]. JAMA neurology, 2019, 76(1): 81-94. DOI: 10.1001/jamaneurol.2018.3122.
14
Pasi M, Cordonnier C. Clinical relevance of cerebral small vessel diseases[J]. Stroke, 2020, 51(1): 47-53. DOI: 10.1161/STROKEAHA.119.024148.
15
Liang Y, Chen YK, Liu YL, et al. Cerebral small vessel disease burden is associated with accelerated poststroke cognitive decline: A 1-year follow-up study[J]. J Geriatr Psychiatry Neurol, 2019, 32(6): 336-343. DOI: 10.1177/0891988719862630.
16
Ryu WS, Schellingerhout D, Hong KS, et al. White matter hyperintensity load on stroke recurrence and mortality at 1 year after ischemic stroke[J]. Neurology, 2019, 93(6): e578-e589. DOI: 10.1212/WNL.0000000000007896.
17
Passiak BS, Liu D, Kresge HA, et al. Perivascular spaces contribute to cognition beyond other small vessel disease markers[J]. Neurology, 2019, 92(12): 1309-1321. DOI: 10.1212/WNL.0000000000007124.
18
Lau KK, Li L, Lovelock CE, et al. Clinical correlates, ethnic differences, and prognostic implications of perivascular spaces in transient ischemic attack and ischemic stroke[J]. Stroke, 2017, 48(6): 1470-1477. DOI: 10.1161/STROKEAHA.117.016694.
19
Yilmaz P, Ikram MK, Niessen WJ, et al. Practical small vessel disease score relates to stroke, dementia, and death[J]. Stroke, 2018, 49(12): 2857-2865. DOI: 10.1161/STROKEAHA.118.022485.
20
IST-3 Collaborative Group. The benefits and harms of intravenous thrombolysis with recombinant tissue plasminogen activator within 6 h of acute ischemic stroke (the third international stroke trial [IST-3]): a randomised controlled trial[J]. The Lancet, 2012, 379(9834): 2352- 2363. DOI: 10.1016/S0140-6736(12)60768-5.
21
Matusevicius M, Paciaroni M, Caso V, et al. Outcome after intravenous thrombolysis in patients with acute lacunar stroke: An observational study based on SITS international registry and a meta-analysis[J]. Inter J Stroke, 2019, 14(9): 878-886. DOI: 10.1177/1747493019840947.
22
Yang CM, Hung CL, Su HC, et al. Leukoaraiosis and risk of intracranial hemorrhage and outcome after stroke thrombolysis[J]. PLoS one, 2018, 13(5): e0196505. DOI: 10.1371/journal.pone.0196505.
23
Curtze S, Melkas S, Sibolt G, et al. Cerebral computed tomography-graded white matter lesions are associated with worse outcome after thrombolysis in patients with stroke[J]. Stroke, 2015, 46(6): 1554-1560. DOI: 10.1161/STROKEAHA.115.008941.
24
Charidimou A, Pasi M, Fiorelli M, et al. Leukoaraiosis, cerebral hemorrhage, and outcome after intravenous thrombolysis for acute ischemic stroke: A meta-analysis[J]. Stroke, 2016, 47(9): 2364-2372. DOI: 10.1161/STROKEAHA.116.014096.
25
Shu XQ, Xiao JS. Meta-analysis of effect of leukoaraiosis on symptomatic intracranial hemorrhage and function prognosis in patients with cerebral infarction after thrombolysis[J]. J Clin Neurol, 2019, 32(4): 263-267. DOI: 10.3969/j.issn.1004-1648.2019.04.007.
26
Schlemm L, Endres M, Werring DJ, et al. Benefit of intravenous thrombolysis in acute ischemic stroke patients with high cerebral microbleed burden[J]. Stroke, 2020, 51(1): 232-239. DOI: 10.1161/STROKEAHA.119.027633.
27
Lau KK, Lovelock CE, Li L, et al. Antiplatelet treatment after transient ischemic attack and ischemic stroke in patients with cerebral microbleeds in 2 large cohorts and an updated systematic review[J]. Stroke, 2018, 49(6): 1434-1442. DOI: 10.1161/STROKEAHA.117.020104.
28
Charidimou A, Boulouis G, Shams S, et al. Intracerebral haemorrhage risk in microbleed-positive ischemic stroke patients with atrial fibrillation: Preliminary meta-analysis of cohorts and anticoagulation decision schema[J]. J Neurological Sci, 2017, 378: 102-109. DOI: 10.1016/j.jns.2017.04.042.
29
Wilson D, Ambler G, Shakeshaft C, et al. Cerebral microbleeds and intracranial haemorrhage risk in patients anticoagulated for atrial fibrillation after acute ischaemic stroke or transient ischemic attack (CROMIS-2): a multicentre observational cohort study[J]. The Lancet Neurology, 2018, 17(6): 539-547. DOI: 10.1016/S1474-4422(18)30145-5.
30
Best JG, Barbato C, Ambler G, et al. Association of enlarged perivascular spaces and anticoagulant-related intracranial hemorrhage[J]. Neurology, 2020, 95(16): e2192-e2199. DOI: 10.1212/WNL.0000000000010788.
31
Liu X, Li T, Diao S, et al. The global burden of cerebral small vessel disease related to neurological deficit severity and clinical outcomes of acute ischemic stroke after IV rt-PA treatment[J]. Neurol Sci, 2019, 40(6): 1157-1166. DOI: 10.1007/s10072-019-03790-x.
32
Zerna C, Yu AYX, Modi J, et al. Association of white matter hyperintensities with short-term outcomes in patients with minor cerebrovascular events[J]. Stroke, 2018, 49(4): 919-923. DOI: 10.1161/STROKEAHA.117.017429.
33
Ryu WS, Woo SH, Schellingerhout D, et al. Stroke outcomes are worse with larger leukoaraiosis volumes[J]. Brain, 2017, 140(1): 158-170. DOI: 10.1093/brain/aww259.
34
Huo Y, Li Q, Zhang W, et al. Total small vessel disease burden predicts functional outcome in patients with acute ischemic stroke[J]. Front in Neurology, 2019, 10: 808. DOI: 10.3389/fneur.2019.00808.
35
Sagnier S, Catheline G, Dilharreguy B, et al. Normal-appearing white matter integrity is a predictor of outcome after ischemic stroke[J]. Stroke, 2020, 51(2): 449-456. DOI: 10.1161/STROKEAHA.119.026886.
36
Linn J, Halpin A, Demaerel P, et al. Prevalence of superficial siderosis in patients with cerebral amyloid angiopathy[J]. Neurology, 2010, 74(17): 1346-1350. DOI: 10.1212/WNL.0b013e3181dad605.
37
Tsai HH, Pasi M, Tsai LK, et al. Distribution of lacunar infarcts in Asians with intracerebral hemorrhage: a magnetic resonance imaging and amyloid positron emission tomography study[J]. Stroke, 2018, 49(6): 1515-1517. DOI: 10.1161/STROKEAHA.118.021539.
38
Wang X, Feng H, Wang Y, et al. Enlarged perivascular spaces and cerebral small vessel disease in spontaneous intracerebral hemorrhagic patients[J].Front in Neurology, 2019, 10: 881. DOI: 10.3389/fneur.2019.00881.
39
Boulouis G, Charidimou A, Pasi M, et al. Hemorrhage recurrence risk factors in cerebral amyloid angiopathy: Comparative analysis of the overall small vessel disease severity score versus individual neuroimaging markers[J]. J Neurological Sci, 2017, 380: 64-67. DOI: 10.1016/j.jns.2017.07.015.
40
Akoudad S, Portegies ML, Koudstaal PJ, et al. Cerebral microbleeds are associated with an increased risk of stroke: the Rotterdam study[J]. Circulation, 2015, 132(6): 509-516. DOI: 10.1161/CIRCULATIONAHA.115.016261.
41
Lioutas VA, Wu B, Norton, et al. Cerebral small vessel disease burden and functional and radiographic outcomes in intracerebral hemorrhage[J]. J Neurol, 2018, 265(12): 2803-2814. DOI: 10.1007/s00415-018-9059-5.
42
Uniken VSM, Marini S, Lena UK, et al. Impact of cerebral small vessel disease on functional recovery after intracerebral hemorrhage[J]. Stroke, 2019, 50(10): 2722-2728. DOI: 10.1161/STROKEAHA.119.025061.
43
Sato S, Delcourt C, Heeley E, et al. Significance of cerebral small-vessel disease in acute intracerebral hemorrhage[J]. Stroke, 2016, 47(3): 701-707. DOI: 10.1161/STROKEAHA.115.012147.

PREV Imaging analysis of prognostic evaluation of cerebral venous and sinus thrombosis
NEXT Research progress of neurite direction diffusion and density imaging for glioma classification
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn