Share:
Share this content in WeChat
X
Review
Advances in the application of artificial intelligence in cardiovascular imaging
LIU Ya′nan  ZHAO Ruifeng 

Cite this article as: Liu YN, Zhao RF. Advances in the application of artificial intelligence in cardiovascular imaging[J]. Chin J Magn Reson Imaging, 2021, 12(7): 114-116, 124. DOI:10.12015/issn.1674-8034.2021.07.027.


[Abstract] The advances in computing power and the explosion of data have ushered in the third wave of artificial intelligence. Artificial intelligence has brought convenience to imaging medicine and promoted the development of imaging medicine. Currently, the prevalence of cardiovascular diseases in China is on the rise, and the application of artificial intelligence as a new technology in the field of cardiovascular imaging has great potential. This paper summarizes the current situation of artificial intelligence in this field.
[Keywords] artificial intelligence;cardiovascular imaging;echocardiography;cardiac computed tomography;cardiac magnetic resonance;cardiac radionuclide imaging

LIU Ya′nan1   ZHAO Ruifeng2*  

Shanxi Medical University, Taiyuan 030001, China

Department of MRI, Shanxi Jincheng General Hospital, Shanxi Medical University, Jincheng 048006, China

Zhao RF, E-mail: jmzyyzrf@sina.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Scientific Research Project of Shanxi Provincial Health Commission (No. 2019149).
Received  2021-03-09
Accepted  2021-04-19
DOI: 10.12015/issn.1674-8034.2021.07.027
Cite this article as: Liu YN, Zhao RF. Advances in the application of artificial intelligence in cardiovascular imaging[J]. Chin J Magn Reson Imaging, 2021, 12(7): 114-116, 124. DOI:10.12015/issn.1674-8034.2021.07.027.

1
Dey D, Slomka PJ, Leeson P, et al. Artificial Intelligence in Cardiovascular Imaging: JACC State-of-the-Art Review[J]. J Am Coll Cardiol, 2019, 73(11): 1317-1335. DOI: 10.1016/j.jacc.2018.12.054.
2
Mehta MC, Katz IT, Jha AK. Transforming global health with AI[J]. New Engl J Med, 2020, 382(9): 791-793. DOI: 10.1056/NEJMp1912079.
3
Zamorano JL, Pinto FJ, Solano-López J, et al. The year in cardiovascular medicine 2020: imaging[J]. Eur Heart J, 2021, 42(5): 499-507. DOI: 10.1093/eurheartj/ehaa1035.
4
Muse ED, Topol EJ. Guiding ultrasound image capture with artificial intelligence[J]. Lancet, 2020, 396(10253): 749. DOI: 10.1016/s0140-6736(20)31875-4.
5
Khamis H, Zurakhov G, Azar V, et al. Automatic apical view classification of echocardiograms using a discriminative learning dictionary[J]. Med Image Anal, 2017, 36(2017): 15-21. DOI: 10.1016/j.media.2016.10.007.
6
Liu F, Wang K, Liu D, et al. Deep pyramid local attention neural network for cardiac structure segmentation in two-dimensional echocardiography[J]. Med Image Anal, 2021, 67: 101873. DOI: 10.1016/j.media.2020.101873.
7
Genovese D, Rashedi N, Weinert L, et al. Machine learning-based three-dimensional echocardiographic quantification of right ventricular size and function: validation against cardiac magnetic resonance[J]. J Am Soc Echocardiogr, 2019, 32(8): 969-977. DOI: 10.1016/j.echo.2019.04.001.
8
Narang A, Mor-Avi V, Prado A, et al. Machine learning based automated dynamic quantification of left heart chamber volumes[J]. Eur Heart J Cardiovasc Imaging, 2019, 20(5): 541-549. DOI: 10.1093/ehjci/jey137.
9
Huang KC, Huang CS, Su MY, et al. Artificial intelligence aids cardiac image quality assessment for improving precision in strain measurements[J]. JACC Cardiovasc Imaging, 2021, 14(2): 335-345. DOI: 10.1016/j.jcmg.2020.08.034.
10
Ouyang D, He B, Ghorbani A, et al. Video-based AI for beat-to-beat assessment of cardiac function[J]. Nature, 2020, 580(7802): 252-256. DOI: 10.1038/s41586-020-2145-8.
11
Qin C, Schlemper J, Caballero J, et al. Convolutional recurrent neural networks for dynamic mr image reconstruction[J]. IEEE Trans Med Imaging, 2019, 38(1): 280-290. DOI: 10.1109/tmi.2018.2863670.
12
Xiong ZH, Xia Q, Hu ZQ, et al. A global benchmark of algorithms for segmenting the left atrium from late gadolinium-enhanced cardiac magnetic resonance imaging[J]. Med Image Anal, 2021, 67: 101832. DOI: 10.1016/j.media.2020.101832.
13
Guo F, Ng M, Goubran M, et al. Improving cardiac MRI convolutional neural network segmentation on small training datasets and dataset shift: a continuous kernel cut approach[J]. Med Image Anal, 2020, 61(2020): 101636. DOI: 10.1016/j.media.2020.101636.
14
Du X, Song Y, Liu Y, et al. An integrated deep learning framework for joint segmentation of blood pool and myocardium[J]. Med Image Anal, 2020, 62(2020): 101685. DOI: 10.1016/j.media.2020.101685.
15
Luo GN, Dong SY, Wang W, et al. Commensal correlation network between segmentation and direct area estimation for bi-ventricle quantification[J]. Med Image Anal, 2020, 59: 101591. DOI: 10.1016/j.media.2019.101591.
16
Ruijsink B, Puyol-Anton E, Oksuz I, et al. Fully Automated, quality-controlled cardiac analysis from CMR validation and large-scale application to characterize cardiac function[J]. JACC Cardiovasc Imaging, 2020, 13(3): 684-695. DOI: 10.1016/j.jcmg.2019.05.030.
17
Swift AJ, Lu H, Uthoff J, et al. A machine learning cardiac magnetic resonance approach to extract disease features and automate pulmonary arterial hypertension diagnosis[J]. Eur Heart J Cardiovasc Imaging, 2021, 22(2): 236-245. DOI: 10.1093/ehjci/jeaa001.
18
Dawes TJW, De Marvao A, Shi W, et al. Machine learning of three-dimensional right ventricular motion enables outcome prediction in pulmonary hypertension: a cardiac MR imaging study[J]. Radiology, 2017, 283(2): 381-390. DOI: 10.1148/radiol.2016161315.
19
Wolterink JM, Leiner T, Viergever MA, et al. Generative adversarial networks for noise reduction in low-dose CT[J]. IEEE Trans Med Imaging, 2017, 36(12): 2536-2545. DOI: 10.1109/tmi.2017.2708987.
20
Baskaran L, Maliakal G, Al'aref SJ, et al. Identification and quantification of cardiovascular structures from CCTA: an end-to-end, rapid, pixel-wise, deep-learning method[J]. JACC Cardiovasc Imaging, 2020, 13(5): 1163-1171. DOI: 10.1016/j.jcmg.2019.08.025.
21
Zreik M, Van Hamersvelt RW, Wolterink JM, et al. A recurrent CNN for automatic detection and classification of coronary artery plaque and stenosis in coronary CT angiography[J]. IEEE Trans Med Imaging, 2019, 38(7): 1588-1598. DOI: 10.1109/tmi.2018.2883807.
22
Yang S, Koo BK, Hoshino M, et al. CT angiographic and plaque predictors of functionally significant coronary disease and outcome using machine learning[J]. JACC Cardiovasc Imaging, 2020, 14(3): 629-641. DOI: 10.1016/j.jcmg.2020.08.025.
23
Greenland P, Blaha MJ, Budoff MJ, et al. Coronary calcium score and cardiovascular risk[J]. J Am Coll Cardiol, 2018, 72(4): 434-447. DOI: 10.1016/j.jacc.2018.05.027.
24
Zeleznik R, Foldyna B, Eslami P, et al. Deep convolutional neural networks to predict cardiovascular risk from computed tomography[J]. Nat Commun, 2021, 12(1): 715. DOI: 10.1038/s41467-021-20966-2.
25
Al'aref SJ, Maliakal G, Singh G, et al. Machine learning of clinical variables and coronary artery calcium scoring for the prediction of obstructive coronary artery disease on coronary computed tomography angiography: analysis from the CONFIRM registry[J]. Eur Heart J, 2020, 41(3): 359-367. DOI: 10.1093/eurheartj/ehz565.
26
Tang CX, Liu CY, Lu MJ, et al. CT FFR for ischemia-specific CAD with a new computational fluid dynamics algorithm: a chinese multicenter study[J]. JACC Cardiovasc Imaging, 2020, 13(4): 980-990. DOI: 10.1016/j.jcmg.2019.06.018.
27
Driessen RS, Danad I, Stuijfzand WJ, et al. Comparison of coronary computed tomography angiography, fractional flow reserve, and perfusion imaging for ischemia diagnosis[J]. J Am Coll Cardiol, 2019, 73(2): 161-173. DOI: 10.1016/j.jacc.2018.10.056.
28
Von Knebel Doeberitz PL, De Cecco CN, SCHOEPF UJ, et al. Coronary CT angiography-derived plaque quantification with artificial intelligence CT fractional flow reserve for the identification of lesion-specific ischemia[J]. Eur Radiol, 2019, 29(5): 2378-2387. DOI: 10.1007/s00330-018-5834-z.
29
Qiao HY, Tang CX, Schoepf UJ, et al. Impact of machine learning-based coronary computed tomography angiography fractional flow reserve on treatment decisions and clinical outcomes in patients with suspected coronary artery disease[J]. Eur Radiol, 2020, 30(11): 5841-5851. DOI: 10.1007/s00330-020-06964-w.
30
Patel MR, Nørgaard BL, Fairbairn TA, et al. 1-Year impact on medical practice and clinical outcomes of FFR(CT): the ADVANCE registry[J]. JACC Cardiovasc Imaging, 2020, 13(1Pt 1): 97-105. DOI: 10.1016/j.jcmg.2019.03.003.
31
Oikonomou EK, Marwan M, Desai MY, et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data[J]. Lancet, 2018, 392(10151): 929-939. DOI: 10.1016/s0140-6736(18)31114-0.
32
Oikonomou EK, Williams MC, KotanidiS CP, et al. A novel machine learning-derived radiotranscriptomic signature of perivascular fat improves cardiac risk prediction using coronary CT angiography[J]. Eur Heart J, 2019, 40(43): 3529-3543. DOI: 10.1093/eurheartj/ehz592.
33
Wang T, Lei Y, Tang H, et al. A learning-based automatic segmentation and quantification method on left ventricle in gated myocardial perfusion SPECT imaging: a feasibility study[J]. J Nucl Cardiol, 2020, 27(3): 976-987. DOI: 10.1007/s12350-019-01594-2.
34
Nakajima K, Kudo T, Nakata T, et al. Diagnostic accuracy of an artificial neural network compared with statistical quantitation of myocardial perfusion images: a Japanese multicenter study[J]. Eur J Nucl Med Mol Imag, 2017, 44(13): 2280-2289. DOI: 10.1007/s00259-017-3834-x.
35
Hu LH, Betancur J, Sharir T, et al. Machine learning predicts per-vessel early coronary revascularization after fast myocardial perfusion SPECT: results from multicentre REFINE SPECT registry[J]. Eur Heart J Cardiovasc Imaging, 2020, 21(5): 549-559. DOI: 10.1093/ehjci/jez177.
36
Betancur J, Commandeur F, Motlagh M, et al. Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: a multicenter study[J]. JACC Cardiovasc Imaging, 2018, 11(11): 1654-1663. DOI: 10.1016/j.jcmg.2018.01.020.
37
Alonso HD, Wernick MN, Yang Y, et al. Prediction of cardiac death after adenosine myocardial perfusion SPECT based on machine learning[J]. J Nucl Cardiol, 2019, 26(5): 1746-1754. DOI: 10.1007/s12350-018-1250-7.
38
Betancur J, Hu LH, Commandeur F, et al. Deep learning analysis of upright-supine high-efficiency SPECT myocardial perfusion imaging for prediction of obstructive coronary artery disease: a multicenter study[J]. J Nucl Med, 2019, 60(5): 664-670. DOI: 10.2967/jnumed.118.213538.
39
Shi L, Onofrey JA, Liu H, et al. Deep learning-based attenuation map generation for myocardial perfusion SPECT[J]. Eur J Nucl Med Mol Imag, 2020, 47(10): 2383-2395. DOI: 10.1007/s00259-020-04746-6.
40
Reyes M, Meier R, Pereira S, et al. On the interpretability of artificial intelligence in radiology: challenges and opportunities[J]. Radiol Artif Intell, 2020, 2(3): e190043. DOI: 10.1148/ryai.2020190043.
41
Li R, Zhao SH. Advances in artificial intelligence of cardiovascular imaging[J]. Chin J Magn Reson Imaging, 2019, 10(7): 551-555. DOI: 10.12015/issn.1674-8034.2019.07.014.

PREV Progress in evaluation of left ventricular diastolic function by cardiac magnetic resonance
NEXT Application progress of MR radiomics in neoadjuvant chemotherapy for breast cancer
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn