Share:
Share this content in WeChat
X
Review
Advances of functional magnetic resonance imaging in quantitative diagnosis of liver fibrosis
GUO Linlin  SHU Jian 

Cite this article as: Guo LL, Shu J. Advances of functional magnetic resonance imaging in quantitative diagnosis of liver fibrosis[J]. Chin J Magn Reson Imaging, 2021, 12(11): 117-121. DOI:10.12015/issn.1674-8034.2021.11.029.


[Abstract] Liver fibrosis is the common pathological basis for various chronic liver diseases to develop into cirrhosis. Early liver fibrosis can be reversed by clinical treatment. At present, the "gold standard" for the diagnosis and staging of liver fibrosis in clinical practice is liver biopsy, which is an invasive examination and carries certain risks. In recent years, functional magnetic resonance imaging technology has developed rapidly. As a non-invasive diagnosis method, it has played an important role in the field of quantitative detection and diagnosis of liver fibrosis. This article reviews the research progress of functional magnetic resonance imaging in the field of quantitative diagnosis of liver fibrosis.
[Keywords] liver fibrosis;liver cirrhosis;magnetic resonance imaging;quantitative imaging;diagnosis

GUO Linlin1, 2   SHU Jian1*  

1 Department of Radiology, Affiliated Hospital of Southwest Medical University, Luzhou 646000, China

2 Department of Medical Imaging, Southwest Medical University, Luzhou, 646000, China

Shu J, E-mail: shujiannc@163.com

Conflicts of interest   None.

Received  2021-06-25
Accepted  2021-07-30
DOI: 10.12015/issn.1674-8034.2021.11.029
Cite this article as: Guo LL, Shu J. Advances of functional magnetic resonance imaging in quantitative diagnosis of liver fibrosis[J]. Chin J Magn Reson Imaging, 2021, 12(11): 117-121. DOI:10.12015/issn.1674-8034.2021.11.029.

[1]
De Franchis R, Fac BV. Expanding consensus in portal hypertension report of the baveno VI consensus workshop: stratifying risk and individualizing care for portal hypertension[J]. J Hepatol, 2015, 63(3): 743-752. DOI: 10.1016/j.jhep.2015.05.022.
[2]
Li H, Chen TW, Chen XL, et al. Magnetic resonance-based total liver volume and magnetic resonance-diffusion weighted imaging for staging liver fibrosis in mini-pigs[J]. World J Gastroenterol, 2012, 18(48): 7225-7233. DOI: 10.3748/wjg.v18.i48.7225.
[3]
Jiang HY, Chen J, Gao RH, et al. Liver fibrosis staging with diffusion-weighted imaging: a systematic review and meta-analysis[J]. Abdom Radiol, 2017, 42(2): 490-501. DOI: 10.1007/s00261-016-0913-6.
[4]
Charatcharoenwitthaya P, Sukonrut K, Korpraphong P, et al. Diffusion-weighted magnetic resonance imaging for the assessment of liver fibrosis in chronic viral hepatitis[J]. PLoS One, 2021, 16(3): e0248024. DOI: 10.1371/journal.pone.0248024.
[5]
Park JH, Seo N, Yong EC, et al. Noninvasive evaluation of liver fibrosis: comparison of the stretched exponential diffusion-weighted model to other diffusion-weighted MRI models and transient elastography[J]. Eur Radiol, 2021, 31(7):4813-4823. DOI: 10.1007/s00330-020-07600-3.
[6]
Le Bihan D, Breton E, Lallemand D, et al. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging[J]. Radiology, 1988, 168(2): 497-505. DOI: 10.1148/radiology.168.2.3393671.
[7]
Huang H, Che-Nordin N, Wang LF, et al. High performance of intravoxel incoherent motion diffusion MRI in detecting viral hepatitis-b induced liver fibrosis[J]. Ann Transl Med, 2019, 7(3): 39. DOI: 10.21037/atm.2018.12.33.
[8]
Ye Z, Wei Y, Chen J, et al. Value of intravoxel incoherent motion in detecting and staging liver fibrosis: A meta-analysis[J]. World J Gastroenterol, 2020, 26(23): 3304-3317. DOI: 10.3748/wjg.v26.i23.3304.
[9]
Ren HW, Liu Y, Lu J, et al. Evaluating the clinical value of MRI multi-model diffusion-weighted imaging on liver fibrosis in chronic hepatitis B patients[J]. Abdom Radiol, 2020(4): 1-10. DOI: 10.1007/s00261-020-02806-x.
[10]
Dyvorne HA, Jajamovich GH, Bane O, et al. Prospective comparison of magnetic resonance imaging to transient elastography and serum markers for liver fibrosis detection[J]. Liver Int, 2016, 36(5): 659-66. DOI: 10.1111/liv.13058.
[11]
Ichikawa S, Motosugi U, Morisaka H, et al. MRI-based staging of hepatic fibrosis: Comparison of intravoxel incoherent motion diffusion-weighted imaging with magnetic resonance elastography[J]. J Magn Reson Imaging, 2015, 42(1): 204-210. DOI: 10.1002/jmri.24760.
[12]
Tosun M, Onal T, Uslu H, et al. Intravoxel incoherent motion imaging for diagnosing and staging the liver fibrosis and inflammation[J]. Abdom Radiol, 2020, 45(1): 15-23. DOI: 10.1007/s00261-019-02300-z.
[13]
Basser PJ, Mattiello J, Lebihan D. MR diffusion tensor spectroscopy and imaging[J]. Biophysical J, 1994, 66(1): 259-267. DOI: 10.1016/s0006-3495(94)80775-1.
[14]
Shi H, Cheng JJ, Liu W, et al. fMRI observation on impact of protracted abstinence on large brain networks in heroin addicts on craving tasks[J]. Chin J Med Imaging Technol, 2019, 35(8): 1169-1174. DOI: 10.13929/j.1003-3289.201901050.
[15]
Huang MP, Lu X, Wang XF, et al. Diffusion tensor imaging quantifying the severity of chronic hepatitis in rats[J]. BMC Med Imaging, 2020, 20(1): 74. DOI: 10.1186/s12880-020-00466-3.
[16]
Lee Y, Kim H. Assessment of diffusion tensor MR imaging (DTI) in liver fibrosis with minimal confounding effect of hepatic steatosis[J]. Magn Reson Med, 2015, 73(4): 1602-1608. DOI: 10.1002/mrm.25253.
[17]
Jensen JH, Helpern JA, Ramani A, et al. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging[J]. Magn Reson Med, 2005, 53(6): 1432-1440. DOI: 10.1002/mrm.20508.
[18]
Jensen JH, Helpern JA. MRI quantification of non-Gaussian water diffusion by kurtosis analysis[J]. NMR Biom, 2010, 23(7): 698-710. DOI: 10.1002/nbm.1518.
[19]
Li Y, Rao SX, Wang WT, et al. Staging liver fibrosis with DWI: is there an added value for diffusion kurtosis imaging?[J]. Eur Radiol, 2018, 28(12): 3041-3049. DOI: 10.1007/s00330-017-5245-6.
[20]
Yoshimaru D, Miyati T, Suzuki Y, et al. Diffusion kurtosis imaging with the breath-hold technique for staging hepatic fibrosis: a preliminary study[J]. Magn Reson Imaging, 2018, 47(1873-5894): 33-38. DOI: 10.1016/j.mri.2017.11.001.
[21]
Hu JW, Liu XL, Guo DM, et al. Evaluation the staging of rabbits' liver fibrosis using diffusion kurtosis imaging: a pilot research[J]. Chin J Magn Reson Imaging, 2020, 11(10): 896-899. DOI: 10.12015/issn.1674-8034.2020.10.012.
[22]
Venkatesh SK, Wells ML, Miller FH, et al. Magnetic resonance elastography: beyond liver fibrosis: a case-based pictorial review[J]. Abdom Radiol, 2017, 43(7): 1590-1611. DOI: 10.1007/s00261-017-1383-1.
[23]
Zou LQ, Zhao F, Zhang H, et al. Staging liver fibrosis on multiparametric MRI in a rabbit model with elastography, susceptibility-weighted imaging and T1ρ imaging: a preliminary study[J]. Acta Radiol, 2020: 1-9. DOI: 10.1177/0284185120917117.
[24]
Liang YZ, Li DW. Magnetic resonance elastography in staging liver fibrosis in non-alcoholic fatty liver disease: a pooled analysis of the diagnostic accuracy[J]. BMC Gastroenterol, 2020, 20(1): 89. DOI: 10.1186/s12876-020-01234-x.
[25]
Imajo K, Kessoku T, Honda Y, et al. Magnetic resonance imaging more accurately classifies steatosis and fibrosis in patients with nonalcoholic fatty liver disease than transient elastography[J]. Gastroenterology, 2016, 150(3): 626-637. e7. DOI: 10.1053/j.gastro.2015.11.048.
[26]
Lee JE, Lee JM, Lee KB, et al. Noninvasive assessment of hepatic fibrosis in patients with chronic hepatitis B viral infection using magnetic resonance elastography[J]. Taehan Bangsason Hakhoe Chi, 2014, 15(2): 210-217. DOI: 10.3348/kjr.2014.15.2.210.
[27]
Lee, Dong, Ho, et al. Prognostic role of liver stiffness measurements using magnetic resonance elastography in patients with compensated chronic liver disease[J]. Eur Radiol, 2018, 28(8): 3513-3521. DOI: 10.1007/s00330-017-5278-x.
[28]
Osman KT, Maselli DB, Idilman IS, et al. Liver stiffness measured by either magnetic resonance or transient elastography is associated with liver fibrosis and is an independent predictor of outcomes among patients with primary biliary cholangitis[J]. J Clin Gastroenterol, 2021, 55(5): 449-457. DOI: 10.1097/MCG.0000000000001433.
[29]
Han MAT, Vipani A, Noureddin N, et al. MR elastography-based liver fibrosis correlates with liver events in nonalcoholic fatty liver patients: A multicenter study[J]. Liver Int, 2020, 40(9): 2242-2251. DOI: 10.1111/liv.14593.
[30]
Abe K, Takahashi A, Imaizumi H, et al. Utility of magnetic resonance elastography for predicting ascites in patients with chronic liver disease[J]. J Gastroenterol Hepatol, 2018, 33(3): 733-740. DOI: 10.1111/jgh.13927.
[31]
Lefebvre T, Wartelle-Bladou C, Wong P, et al. Prospective comparison of transient, point shear wave, and magnetic resonance elastography for staging liver fibrosis[J]. Eur Radiol, 2019, 29(12): 6477-6488. DOI: 10.1007/s00330-019-06331-4.
[32]
Tapper EB, Loomba R. Noninvasive imaging biomarker assessment of liver fibrosis by elastography in NAFLD[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(5): 274-282. DOI: 10.1038/nrgastro.2018.10.
[33]
Hernandez-Gea V, Friedman SL. Pathogenesis of liver fibrosis[J]. Annu Rev Pathol, 2011, 6(1553-4014): 425-56. DOI: 10.1146/annurev-pathol-011110-130246.
[34]
Sheng RF, Wang HQ, Yang L, et al. Assessment of liver fibrosis using T1 mapping on Gd-EOB-DTPA-enhanced magnetic resonance[J]. Digest Liver Dis, 2017, 49(7): 789-795. DOI: 10.1016/j.dld.2017.02.006.
[35]
Haimerl M, Utpatel K, Verloh N, et al. Gd-EOB-DTPA-enhanced MR relaxometry for the detection and staging of liver fibrosis[J]. Sci Rep, 2017, 7: 41429. DOI: 10.1038/srep41429.
[36]
Lai LY, Huang MP, Su S, et al. Liver fibrosis staging with gadolinium ethoxybenzyl diethylenetriamine penta-acetic acid-enhanced: a systematic review and Meta-analysis[J]. Curr Med Imaging, 2021, 17(7): 854-863. DOI: 10.2174/1573405616666201130101229.
[37]
Hako R, Kristian P, Jarcuska P, et al. Noninvasive assessment of liver fibrosis in patients with chronic hepatitis B or C by contrast-enhanced magnetic resonance imaging[J]. Canadian J Gastroenterol Hepatol, 2019, 2019: 3024630. DOI: 10.1155/2019/3024630.
[38]
Liu HF, Wang Q, Du YN, et al. Dynamic contrast-enhanced MRI with Gd-EOB-DTPA for the quantitative assessment of early-stage liver fibrosis induced by carbon tetrachloride in rabbits[J]. Magn Reson Imaging, 2020, 70: 57-63. DOI: 10.1016/j.mri.2020.04.010.
[39]
Ding K, Liu MR, Wei X, et al. Comparison of MR-PWI quantitative and semi-quantitative parameters for the evaluation of liver fibrosis[J]. BMC Med Imaging, 2021, 21(1): 8. DOI: 10.1186/s12880-020-00539-3.
[40]
Han BY, Wang H, Wang YL, et al. The values of MR perfusion weighted imaging in evaluating rabbit liver fibrosis[J]. J Chin Clin Med Imaging, 2017, 28(7): 484-487. DOI: CNKI:SUN:LYYX.0.2017-07-008.
[41]
Zhou L, Chen TW, Zhang XM, et al. Liver dynamic contrast-enhanced MRI for staging liver fibrosis in a piglet model[J]. J Magn Reson Imaging, 2014, 39(4): 872-878. DOI: 10.1002/jmri.24248.
[42]
Hagiwara M, Rusinek H, Lee VS, et al. Advanced liver fibrosis: diagnosis with 3D whole-liver perfusion MR imaging--initial experience[J]. Radiology, 2008, 246(3): 926-934. DOI: 10.1148/radiol.2463070077.
[43]
Chen BB, Hsu CY, Yu CW, et al. Dynamic contrast-enhanced magnetic resonance imaging with Gd-EOB-DTPA for the evaluation of liver fibrosis in chronic hepatitis patients[J]. Eur Radiol, 2012, 22(1): 171-180. DOI: 10.1007/s00330-011-2249-5.
[44]
Serai SD, Trout AT, Miethke A, et al. Putting it all together: established and emerging MRI techniques for detecting and measuring liver fibrosis[J]. Pediat Radiol, 2018, 48(9): 1256-1272. DOI: 10.1007/s00247-018-4083-2.
[45]
Mathew RP, Venkatesh SK. Imaging of Hepatic Fibrosis[J]. Curr Gastroenterol Rep, 2018, 20(10): 45. DOI: 10.1007/s11894-018-0652-7.
[46]
Hu GW, Zhang XH, Liang W, et al. Assessment of liver fibrosis in rats by MRI with apparent diffusion coefficient and T1 relaxation time in the rotating frame[J]. J Magn Reson Imaging, 2016, 43(5): 1082-1089. DOI: 10.1002/jmri.25084.
[47]
Zhao F, Zhou N, Wang JL, et al. Collagen deposition in the liver is strongly and positively associated with T1rho elongation while fat deposition is associated with T1rho shortening: an experimental study of methionine and choline-deficient (MCD) diet rat model[J]. Quant Imaging Med Surg, 2020, 10(12): 2307-2321. DOI: 10.21037/qims-20-651.
[48]
Li RK, Ren XP, Yan FH, et al. Liver fibrosis detection and staging: a comparative study of T1 rho MR imaging and 2D real-time shear-wave elastography[J]. Abdom Radiol, 2018, 43(7): 1713-1722. DOI: 10.1007/s00261-017-1381-3.
[49]
Allkemper T, Sagmeister F, Cicinnati V, et al. Evaluation of fibrotic liver disease with whole-liver T1 rho MR imaging: a feasibility study at 1.5 T[J]. Radiology, 2014, 271(2): 408-415. DOI: 10.1148/radiol.13130342.
[50]
Wang YXJ. Physiological variation of liver iron concentration may not be dominantly responsible for the liver T1rho variations associated with age and gender[J]. Quant Imaging Med Surg, 2021, 11(4): 1668-1673. DOI: 10.21037/qims-20-1250.
[51]
Takayama Y, Nishie A, Asayama Y, et al. T-1 rho relaxation of the liver: a potential biomarker of liver function[J]. J Magn Reson Imaging, 2015, 42(1): 188-195. DOI: 10.1002/jmri.24739.
[52]
Xie SS, Qi HX, Li Q, et al. Liver injury monitoring, fibrosis staging and inflammation grading using T1rho magnetic resonance imaging: an experimental study in rats with carbon tetrachloride intoxication[J]. Bmc Gastroenterol, 2020, 20(1): 14. DOI: 10.1186/s12876-020-1161-3.
[53]
Chen WB, Chen X, Yang L, et al. Quantitative assessment of liver function with whole-liver T1rho mapping at 3.0 T[J]. Magn Reson Imaging, 2018, 46: 75-80. DOI: 10.1016/j.mri.2017.10.009.
[54]
Ooi GJ, Earnest A, Kemp WW, et al. Evaluating feasibility and accuracy of non-invasive tests for nonalcoholic fatty liver disease in severe and morbid obesity[J]. Int J Obesity, 2018, 42(11): 1900-1911. DOI: 10.1038/s41366-018-0007-3.
[55]
Moon CM, Shin SS, Heo SH, et al. Metabolic changes in different stages of liver fibrosis: in vivo hyperpolarized C-13 MR spectroscopy and metabolic imaging[J]. Mol Imaging Biol, 2019, 21(5): 842-851. DOI: 10.1007/s11307-019-01322-9.
[56]
Puustinen L, Hakkarainen A, Kivisaari R, et al. (31)Phosphorus magnetic resonance spectroscopy of the liver for evaluating inflammation and fibrosis in autoimmune hepatitis[J]. Scand J Gastroenterol, 2017, 52(8): 886-892. DOI: 10.1080/00365521.2017.1315738.
[57]
Hakkarainen A, Puustinen L, Kivisaari R, et al. Metabolic profile of liver damage in non-cirrhotic virus C and autoimmune hepatitis: a proton decoupled P-31-MRS study[J]. Eur J Radiol, 2017, 90: 205-211. DOI: 10.1016/j.ejrad.2017.01.008.
[58]
Traussnigg S, Kienbacher C, Gajdosik M, et al. Ultra-high-field magnetic resonance spectroscopy in non-alcoholic fatty liver disease: Novel mechanistic and diagnostic insights of energy metabolism in non-alcoholic steatohepatitis and advanced fibrosis[J]. Liver Int, 2017, 37(10): 1544-1553. DOI: 10.1111/liv.13451.
[59]
Ding K, Liu MR, Huang RS, et al. A comparative study of 3.0 T (1)H-MRS for varying degrees of liver fibrosis in cynomolgus monkeys[J]. Zhonghua Gan Zang Bing Za Zhi, 2020, 28(9): 766-772. DOI: 10.3760/cma.j.cn501113-20190212-00044.
[60]
Zhang SH, Zhang Y, Wen KM, et al. Staging of liver fibrosis treated with hepatocyte growth factor by ultrasound cationic microbubble nano-liposomes using H-1 magnetic resonance spectroscopy[J]. Nanosci Nanotechnol Lett, 2018, 10(10): 1458-1462. DOI: 10.1166/nnl.2018.2796.

PREV Research progress of MRI radiomics in cardiac diseases
NEXT Research progress of functional MRI in renal ischemia reperfusion injury
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn