Share:
Share this content in WeChat
X
Review
Research progress of functional MRI in renal ischemia reperfusion injury
ZHOU Changning  CHEN Kuntao 

Cite this article as: Zhou CN, Chen KT. Research progress of functional MRI in renal ischemia reperfusion injury[J]. Chin J Magn Reson Imaging, 2021, 12(11): 122-124. DOI:10.12015/issn.1674-8034.2021.11.030.


[Abstract] Renal ischemia reperfusion injury is an important cause of acute renal injury and reduced survival rate of renal allograft. Early detection of renal ischemia reperfusion injury is the key to ensure timely clinical intervention and treatment. With the development of magnetic resonance imaging technology, the application of functional magnetic resonance imaging (fMRI) in the diagnosis of renal diseases is gradually increasing, which can noninvasively and dynamically evaluate the changes of renal function from the aspects of water molecular diffusion, microcirculation, hemodynamics, oxygenation and so on. This article reviews the functional magnetic resonance imaging study of renal ischemia reperfusion injury in order to provide more methods and evidence for early clinical evaluation and noninvasive diagnosis.
[Keywords] renal function;reperfusion injury;magnetic resonance imaging;diffusion imaging;blood oxygen level dependent

ZHOU Changning   CHEN Kuntao*  

Department of Radiology, the Fifth Affiliated (Zhuhai) Hospital of Zunyi Medical University, Zhuhai 519100, China

Chen KT, E-mail: zy5yyx@126.com

Conflicts of interest   None.

Received  2021-05-12
Accepted  2021-06-23
DOI: 10.12015/issn.1674-8034.2021.11.030
Cite this article as: Zhou CN, Chen KT. Research progress of functional MRI in renal ischemia reperfusion injury[J]. Chin J Magn Reson Imaging, 2021, 12(11): 122-124. DOI:10.12015/issn.1674-8034.2021.11.030.

[1]
Park J, Lee EG, Yi HJ, et al. Ablation of peroxiredoxin V exacerbates ischemia/reperfusion-induced kidney injury in mice[J]. Antioxidants (Basel), 2020, 9(8): 769. DOI: 10.3390/antiox9080769.
[2]
Li XR, Liao J, Su XJ, et al. Human urine-derived stem cells protect against renal ischemia/reperfusion injury in a rat model via exosomal miR-146a-5p which targets IRAK1[J]. Theranostics, 2020, 10(21): 9561-9578. DOI: 10.7150/thno.42153.
[3]
Hart A, Gustafson SK, Skeans MA, et al. OPTN/SRTR 2015 annual data report: early effects of the new kidney allocation system[J]. Am J Transplant, 2017, 17(Suppl 1): 543-564. DOI: 10.1111/ajt.14132.
[4]
Pan L, Chen J, Xing W, et al. Magnetic resonance imaging evaluation of renal ischaemia-reperfusion injury in a rabbit model[J]. Exp Physiol, 2017, 102(8): 1000-1006. DOI: 10.1113/EP086203.
[5]
Zhou JY, Wang YC, Zeng CH, et al. Renal functional MRI and its application[J]. J Magn Reson Imaging, 2018, 48(4): 863-881. DOI: 10.1002/jmri.26180.
[6]
Wilm BJ, Hennel F, Roesler MB, et al. Minimizing the echo time in diffusion imaging using spiral readouts and a head gradient system[J]. Magn Reson Med, 2020, 84(6): 3117-3127. DOI: 10.1002/mrm.28346.
[7]
Liu XG, Wu HH, Zhang R, et al. MitoQ protects rodent kidneys from ischemia-reperfusion injury: observations with DWI[J]. Chin J Magn Reson Imaging, 2017, 8(7): 526-531. DOI: 10.12015/issn.1674-8034.2017.07.009.
[8]
Ko SF, Yip HK, Zhen YY, et al. Severe bilateral ischemic-reperfusion renal injury: hyperacute and acute changes in apparent diffusion coefficient, T1, and T2 mapping with immunohistochemical correlations[J]. Sci Rep, 2017, 7(1): 1725. DOI: 10.1038/s41598-017-01895-x.
[9]
Ko SF, Yip HK, Lee CC, et al. Apparent diffusion coefficient is a useful biomarker for monitoring adipose-derived mesenchymal stem cell therapy of renal ischemic-reperfusion injury[J]. Mol Imaging Biol, 2018, 20(5): 750-760. DOI: 10.1007/s11307-018-1184-0.
[10]
Federau C. Intravoxel incoherent motion MRI as a means to measure in vivo perfusion: a review of the evidence[J]. NMR Biomed, 2017, 30(11). DOI: 10.1002/nbm.3780.
[11]
Zheng XF, Zang GY, Jiang JF, et al. Attenuating ischemia-reperfusion injury in kidney transplantation by perfusing donor organs with sirna cocktail solution[J]. Transplantation, 2016, 100(4): 743-52. DOI: 10.1097/TP.0000000000000960.
[12]
Hashim E, Yuen DA, Kirpalani A. Reduced flow in delayed graft function as assessed by ivim is associated with time to recovery following kidney transplantation[J]. J Magn Reson Imaging, 2021, 53(1): 108-117. DOI: 10.1002/jmri.27245.
[13]
Schneider MJ, Dietrich O, Ingrisch M, et al. Intravoxel incoherent motion magnetic resonance imaging in partially nephrectomized kidneys[J]. Invest Radiol, 2016, 51(5): 323-330. DOI: 10.1097/RLI.0000000000000244.
[14]
Chen LH, Ren T, Zuo PL, et al. Detecting impaired function of renal allografts at the early stage after transplantation using intravoxel incoherent motion imaging[J]. Acta Radiol, 2019, 60(8): 1039-1047. DOI: 10.1177/0284185118810979.
[15]
Haller S, Zaharchuk G, Thomas DL, et al. Arterial spin labeling perfusion of the brain: emerging clinical applications[J]. Radiology, 2016, 281(2): 337-356. DOI: 10.1148/radiol.2016150789.
[16]
Hernandez-Garcia L, Lahiri A, Schollenberger J. Recent progress in ASL[J]. Neuroimage, 2019, 187(4): 3-16. DOI: 10.1016/j.neuroimage.2017.12.095.
[17]
Zimmer F, Zöllner FG, Hoeger S, et al. Quantitative renal perfusion measurements in a rat model of acute kidney injury at 3 T: testing inter-and intramethodical significance of ASL and DCE-MRI[J]. PLoS One, 2013, 8(1): e53849. DOI: 10.1371/journal.pone.0053849.
[18]
Tewes S, Gueler F, Chen R, et al. Functional MRI for characterization of renal perfusion impairment and edema formation due to acute kidney injury in different mouse strains[J]. PLoS One, 2017, 12(3): e0173248. DOI: 10.1371/journal.pone.0173248.
[19]
Hueper K, Gutberlet M, Rong S, et al. Acute kidney injury: arterial spin labeling to monitor renal perfusion impairment in mice-comparison with histopathologic results and renal function[J]. Radiology, 2014, 270(1): 117-124. DOI: 10.1148/radiol.13130367.
[20]
Baligand C, Qin H, True-Yasaki A, et al. Hyperpolarized 13 C magnetic resonance evaluation of renal ischemia reperfusion injury in a murine model[J]. NMR Biomed, 2017, 30(10): 10.1002/nbm.3765. DOI: 10.1002/nbm.3765.
[21]
Lanzman RS, Notohamiprodjo M, Wittsack HJ. Functional magnetic resonance imaging of the kidneys[J]. Radiologe, 2015, 55(12): 1077-1087. DOI: 10.1007/s00117-015-0044-z.
[22]
Luo FL, Liao Y, Cui KH, et al. Noninvasive evaluation of renal oxygenation in children with chronic kidney disease using blood-oxygen-level-dependent magnetic resonance imaging[J]. Pediatr Radiol, 2020, 50(6): 848-854. DOI: 10.1007/s00247-020-04630-3.
[23]
Bauer F, Wald J, Bauer FJ, et al. Detection of acute tubular necrosis using blood oxygenation level-dependent (BOLD) MRI[J]. Kidney Blood Press Res, 2017, 42(6): 1078-1089. DOI: 10.1159/000485600.
[24]
Lal H, Mohamed E, Soni N, et al. Role of blood oxygen level-dependent MRI in differentiation of acute renal allograft dysfunction[J]. Indian J Nephrol, 2018, 28(6): 441-447. DOI: 10.4103/ijn.IJN_43_18.
[25]
Zhang BH, Wang Y, Wang CY, et al. Comparison of blood oxygen level-dependent imaging and diffusion-weighted imaging in early diagnosis of acute kidney injury in animal models[J]. J Magn Reson Imaging, 2019, 50(3): 719-724. DOI: 10.1002/jmri.26617.
[26]
Ren Y, Cui JM, Shen W. Experimental research progress of functional MRI evaluation in renal ischemia-reperfusion injury[J]. Int J Med Radiol, 2019, 42(06): 688-691. DOI: 10.19300/j.2019.Z7125.
[27]
Zhou HY, Chen TW, Zhang XM. Functional magnetic resonance imaging in acute kidney injury: present status[J]. Biomed Res Int, 2016, 2016: 2027370. DOI: 10.1155/2016/2027370.
[28]
Sun J, Yu S, Chen J, et al. Assessment of delayed graft function using susceptibility-weighted imaging in the early period after kidney transplantation: a feasibility study[J]. Abdom Radiol (NY), 2019, 44(1): 218-226. DOI: 10.1007/s00261-018-1709-7.
[29]
Pan L, Chen J, Zha TT, et al. Evaluation of renal ischemia-reperfusion injury by magnetic resonance imaging texture analysis: an experimental study[J]. Magn Reson Med, 2021, 85(1): 346-356. DOI: 10.1002/mrm.28403.
[30]
Sun J, Yu SN, Chen J, et al. Assessment of delayed graft function using susceptibility-weighted imaging in the early period after kidney transplantation: a feasibility study[J]. Abdom Radiol (NY), 2019, 44(1): 218-226. DOI: 10.1007/s00261-018-1709-7.
[31]
Dai YM, Zeng MS, Li RK, et al. Improving detection of siderotic nodules in cirrhotic liver with a multi-breath-hold susceptibility-weighted imaging technique[J]. J Magn Reson Imaging, 2011, 34(2): 318-25. DOI: 10.1002/jmri.22607.
[32]
Xing W, He XZ, Kassir MA, et al. Evaluating hemorrhage in renal cell carcinoma using susceptibility weighted imaging[J]. PLoS One, 2013, 8(2): e57691. DOI: 10.1371/journal.pone.0057691.
[33]
Ren T, Chen LH, Xie SS,et al. Value of TI mapping to quantitative analyze the difference of T1 values in different renal allografts function early after kidney transpIantation[J]. Radiol Pract, 2017, 32(12): 1277-1281. DOI: 10.13609/j.cnki.1000-0313.2017.12.015.
[34]
Chen J, Chen Q, Zhang JG, et al. Value of T2 mapping in the dynamic evaluation of renal ischemia-reperfusion injury[J]. Acad Radiol, 2021. [ DOI: ]. DOI: 10.1016/j.acra.2021.03.004.

PREV Advances of functional magnetic resonance imaging in quantitative diagnosis of liver fibrosis
NEXT Initial application of synthetic MRI in evaluating brain maturation of preterm infants
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn