Share:
Share this content in WeChat
X
Review
Research progress of Wallerian degeneration in the central nervous system diffusion magnetic resonance imaging
WANG Junxin  CUI Yunan  BING Yu  MIAO Yanwei 

Cite this article as: Wang JX, Cui YN, Bing Y, et al. Research progress of Wallerian degeneration in the central nervous system diffusion magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2021, 12(12): 115-117. DOI:10.12015/issn.1674-8034.2021.12.028.


[Abstract] Wallerian degeneration refers to the process of demyelination and disintegration of distal axons due to injury to the cell body or proximal axons. Wallerian degeneration of the pyramidal tract of the central nervous system will affect the recovery of the patient's motor function. More advanced MRI techniques can not only provide relevant information of early wallerian degeneration in pyramidal tract, but also predict the long-term recovery of motor function of patients, which will provide help for early intervention and treatment of patients in the future.
[Keywords] wallerian degeneration;diffusion magnetic resonance imaging;motor function

WANG Junxin   CUI Yunan   BING Yu   MIAO Yanwei*  

Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian 116000, China

Miao YW, E-mail: ywmiao716@163.com

Conflicts of interest   None.

Received  2021-04-12
Accepted  2021-05-20
DOI: 10.12015/issn.1674-8034.2021.12.028
Cite this article as: Wang JX, Cui YN, Bing Y, et al. Research progress of Wallerian degeneration in the central nervous system diffusion magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2021, 12(12): 115-117. DOI:10.12015/issn.1674-8034.2021.12.028.

[1]
Waller AV, Owen R. XX. Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of their primitive fibres[J]. Philosophical Transactions of the Royal Society of London, 1850, 140: 423-429. DOI: 10.1098/rstl.1850.0021.
[2]
Tricaud N, Park HT. Wallerian demyelination: chronicle of a cellular cataclysm[J]. Cell Mol Life Sci, 2017, 74(22): 4049-4057. DOI: 10.1007/s00018-017-2565-2.
[3]
Kuhn MJ, Mikulis DJ, Ayoub DM, et al. Wallerian degeneration after cerebral infarction: evaluation with sequential MR imaging[J]. Radiology, 1989, 172(1): 179-182. DOI: 10.1148/radiology.172.1.2740501.
[4]
Liu X, Tian W, Qiu X, et al. Correlation analysis of quantitative diffusion parameters in ipsilateral cerebral peduncle during Wallerian degeneration with motor function outcome after cerebral ischemic stroke[J]. J Neuroimaging, 2012, 22(3): 255-260. DOI: 10.1111/j.1552-6569.2011.00617.x.
[5]
Schwartz ED, Cooper ET, Fan Y, et al. MRI diffusion coefficients in spinal cord correlate with axon morphometry[J]. Neuroreport, 2005, 16(1): 73-76. DOI: 10.1097/00001756-200501190-00017.
[6]
Feldman SJ, Boyd LA, Neva JL, et al. Extraction of corticospinal tract microstructural properties in chronic stroke[J]. J Neurosci Methods, 2018, 301: 34-42. DOI: 10.1016/j.jneumeth.2018.03.001.
[7]
Bekiesinska-Figatowska M, Duczkowska A, Szkudlinska-Pawlak S, et al. Diffusion restriction in the corticospinal tracts and the corpus callosum in neonates after cerebral insult[J]. Brain Dev, 2017, 39(3): 203-210. DOI: 10.1016/j.braindev.2016.10.003.
[8]
Moura LM, Luccas R, De Paiva JP Q, et al. Diffusion tensor imaging biomarkers to predict motor outcomes in stroke: a narrative review[J]. Front Neurol, 2019, 10: 445. DOI: 10.3389/fneur.2019.00445.
[9]
Welniarz Q, Dusart I, Roze E. The corticospinal tract: evolution, development, and human disorders[J]. Dev Neurobiol, 2017, 77(7): 810-829. DOI: 10.1002/dneu.22455.
[10]
Doughty C, Wang J, Feng W, et al. Detection and predictive value of fractional anisotropy changes of the corticospinal tract in the acute phase of a stroke[J]. Stroke, 2016, 47(6): 1520-1526. DOI: 10.1161/STROKEAHA.115.012088.
[11]
Lee AY, Choi KT, Chang MC. Prediction of muscle loss after stroke by analysis of corticospinal tract[J]. Transl Neurosci, 2020, 11(1): 328-333. DOI: 10.1515/tnsci-2020-0114.
[12]
Puig J, Blasco G, Schlaug G, et al. Diffusion tensor imaging as a prognostic biomarker for motor recovery and rehabilitation after stroke[J]. Neuroradiology, 2017, 59(4): 343-351. DOI: 10.1007/s00234-017-1816-0.
[13]
Yin S, Jin CX, Zhang DP, et al. Magnetic resonance imaging evaluation of Wallerian degeneration of bilateral middle cerebellar peduncles after pontine infarction[J]. Saudi Med J, 2019, 40(12): 1278-1284. DOI: 10.15537/smj.2019.12.24491.
[14]
Orman G, Bosemani T, Jallo GI, et al. Hypertrophic olivary degeneration in a child following midbrain tumor resection: longitudinal diffusion tensor imaging studies[J]. J Neurosurg Pediatr, 2014, 13(4): 408-413. DOI: 10.3171/2014.1.PEDS13490.
[15]
Bao B, Wu X, Xia Z, et al. Hypertrophic olivary degeneration concomitant with bilateral middle cerebellar peduncles Wallerian degeneration following unilateral pontine infarction[J]. BMC Neurol, 2020, 20(1): 409. DOI: 10.1186/s12883-020-01984-x.
[16]
Pinter D, Gattringer T, Fandler-Hofler S, et al. Early progressive changes in white matter integrity are associated with stroke recovery[J]. Transl Stroke Res, 2020, 11(6): 1264-1272. DOI: 10.1007/s12975-020-00797-x.
[17]
Liu M, Gross DW, Wheatley BM, et al. The acute phase of Wallerian degeneration: longitudinal diffusion tensor imaging of the fornix following temporal lobe surgery[J]. Neuroimage, 2013, 74: 128-139. DOI: 10.1016/j.neuroimage.2013.01.069.
[18]
Ingo C, Lin C, Higgins J, et al. Diffusion properties of normal-appearing white matter microstructure and severity of motor impairment in acute ischemic stroke[J]. AJNR Am J Neuroradiol, 2020, 41(1): 71-78. DOI: 10.3174/ajnr.A6357.
[19]
Wu EX, Cheung MM. MR diffusion kurtosis imaging for neural tissue characterization[J]. NMR Biomed, 2010, 23(7): 836-848. DOI: 10.1002/nbm.1506.
[20]
Yu X, Jiaerken Y, Wang S, et al. Changes in the corticospinal tract beyond the ischemic lesion following acute hemispheric stroke: a diffusion kurtosis imaging study[J]. J Magn Reson Imaging, 2020, 52(2): 512-519. DOI: 10.1002/jmri.27066.
[21]
Wang JT, Medress ZA, Barres BA. Axon degeneration: molecular mechanisms of a self-destruction pathway[J]. J Cell Biol, 2012, 196(1): 7-18. DOI: 10.1083/jcb.201108111.
[22]
Spampinato MV, Chan C, Jensen JH, et al. Diffusional kurtosis imaging and motor outcome in acute ischemic stroke[J]. AJNR Am J Neuroradiol, 2017, 38(7): 1328-1334. DOI: 10.3174/ajnr.A5180.
[23]
Mastropietro A, Rizzo G, Fontana L, et al. Microstructural characterization of corticospinal tract in subacute and chronic stroke patients with distal lesions by means of advanced diffusion MRI[J]. Neuroradiology, 2019, 61(9): 1033-1045. DOI: 10.1007/s00234-019-02249-2.
[24]
Taquet M, Jankovski A, Rensonnet G, et al. Extra-axonal restricted diffusion as an in-vivo marker of reactive microglia[J]. Sci Rep, 2019, 9(1): 13874. DOI: 10.1038/s41598-019-50432-5.
[25]
Benjamini D, Hutchinson EB, Komlosh ME, et al. Direct and specific assessment of axonal injury and spinal cord microenvironments using diffusion correlation imaging[J]. Neuroimage, 2020, 221: 117195. DOI: 10.1016/j.neuroimage.2020.117195.

PREV Research progress of magnetic resonance elastography in the quantitative diagnosis and staging of liver fibrosis
NEXT Advances in functional magnetic resonance imaging for renal function assessment
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn