Share:
Share this content in WeChat
X
Review
Advances in functional magnetic resonance imaging for renal function assessment
LIU Ya'nan  ZHAO Ruifeng 

Cite this article as: Liu YN, Zhao RF. Advances in functional magnetic resonance imaging for renal function assessment[J]. Chin J Magn Reson Imaging, 2021, 12(12): 118-120, 124. DOI:10.12015/issn.1674-8034.2021.12.029.


[Abstract] Various diseases can cause abnormal renal function. Early and accurate evaluation of renal function is the focus of clinical diagnosis and treatment. Currently available clinical biomarkers cannot accurately detect renal insufficiency early and assess its severity and progression. With the rapid development of functional magnetic resonance imaging (fMRI) technology, fMRI techniques such as blood oxygen level-dependence imaging, diffusion-weighted imaging, intravoxel incoherent motion imaging, diffusion tensor imaging, and arterial spin labeling can noninvasively assess renal function from oxygenation, diffusion and perfusion, providing more information for the early diagnosis, progression and prognosis of renal disease. In this paper, the principle of fMRI and its evaluation of renal function are described.
[Keywords] kidney;renal function;magnetic resonance imaging;diffusion-weighted imagaing;arterial spin labeling;blood oxygen level-dependent

LIU Ya'nan1   ZHAO Ruifeng2*  

1 Shanxi Medical University, Taiyuan 030001, China

2 Department of Imaging, Shanxi Jincheng General Hospital, Shanxi Medical University, Jincheng 048006, China

Zhao RF, E-mail: jmzyyzrf@sina.com

Conflicts of interest   None.

Received  2021-08-13
Accepted  2021-10-09
DOI: 10.12015/issn.1674-8034.2021.12.029
Cite this article as: Liu YN, Zhao RF. Advances in functional magnetic resonance imaging for renal function assessment[J]. Chin J Magn Reson Imaging, 2021, 12(12): 118-120, 124. DOI:10.12015/issn.1674-8034.2021.12.029.

[1]
Wang J, Hu CH, Ma XJ, et al. Semiquantitative and quantitative analyses of dynamic contrast-enhanced magnetic resonance imaging in the differentiation between malignant and benign thyroid nodules[J]. J Clin Radiol, 2019, 38(5): 868-73. DOI: 10.13437/j.cnki.jcr.2019.05.028.
[2]
Prasad PV. Update on renal blood oxygenation level-dependent MRI to assess intrarenal oxygenation in chronic kidney disease[J]. Kidney Int, 2018, 93(4): 778-80. DOI: 10.1016/j.kint.2017.11.029.
[3]
Pruijm M, Mendichovszky IA, Liss P, et al. Renal blood oxygenation level-dependent magnetic resonance imaging to measure renal tissue oxygenation: a statement paper and systematic review[J]. Nephrol Dial Transplant, 2018, 33(suppl_2): ii22-ii8. DOI: 10.1093/ndt/gfy243.
[4]
Wu GY, Zhang RY, Mao HM, et al. The value of blood oxygen level dependent (BOLD) imaging in evaluating post-operative renal function outcomes after laparoscopic partial nephrectomy[J]. Eur Radiol, 2018, 28(12): 5035-5043. DOI: 10.1007/s00330-018-5525-9.
[5]
Li CX, Liu HT, Li X, et al. Application of BOLD-MRI in the classification of renal function in chronic kidney disease[J]. Abdom Radiol (NY), 2019, 44(2): 604-611. DOI: 10.1007/s00261-018-1750-6.
[6]
Prasad PV, Thacker J, Li LP, et al. Multi-Parametric Evaluation of Chronic Kidney Disease by MRI: A Preliminary Cross-Sectional Study[J]. PLoS One, 2015, 10(10): e0139661. DOI: 10.1371/journal.pone.0139661.
[7]
Cui KH, Tao YH. Research progress of renal blood oxygen level dependent magnetic resonance imaging[J]. Chin J Magn Reson Imaging, 2021, 12(8): 111-113. DOI: 10.12015/issn.1674-8034.2021.08.026.
[8]
Pruijm M, Milani B, Pivin E, et al. Reduced cortical oxygenation predicts a progressive decline of renal function in patients with chronic kidney disease[J]. Kidney Int, 2018, 93(4): 932-940. DOI: 10.1016/j.kint.2017.10.020.
[9]
Chen F, Yan H, Yang F, et al. Evaluation of Renal Tissue Oxygenation Using Blood Oxygen Level-Dependent Magnetic Resonance Imaging in Chronic Kidney Disease[J]. Kidney Blood Press Res, 2021, 1-11. DOI: 10.1159/000515709.
[10]
Liu HT, Zhou ZJ, Li X, et al. Diffusion-weighted imaging for staging chronic kidney disease: a meta-analysis[J]. Br J Radiol, 2018, 91(1091): 20170952. DOI: 10.1259/bjr.20170952.
[11]
Wang L, Chen KT. Research progress of functional magnetic resonance imaging in the assessment of renal function[J]. Chin J CT MRI, 2021, 19(6): 173-176. DOI: 10.3969/j.issn.1672-5131.2021.06.055.
[12]
Mrđanin T, Nikolić O, Molnar U, et al. Diffusion-weighted imaging in the assessment of renal function in patients with diabetes mellitus type 2[J]. Magma, 2021, 34(2): 273-283. DOI: 10.1007/s10334-020-00869-x.
[13]
Yu ZX, Zhu HH, Wu XL, et al. Acute renal impairment characterization using diffusion magnetic resonance imaging: Validation by histology[J]. NMR Biomed, 2019, 32(9): e4126. DOI: 10.1002/nbm.4126.
[14]
Steiger P, Barbieri S, Kruse A, et al. Selection for biopsy of kidney transplant patients by diffusion-weighted MRI[J]. Eur Radiol, 2017, 27(10): 4336-4344. DOI: 10.1007/s00330-017-4814-z.
[15]
Mao W, Zhou JJ, Zeng MS, et al. Chronic kidney disease: Pathological and functional evaluation with intravoxel incoherent motion diffusion-weighted imaging[J]. J Magn Reson Imaging, 2018, 47(5): 1251-1259. DOI: 10.1002/jmri.25861.
[16]
Sułkowska K, Palczewski P, Furmańczyk-Zawiska A, et al. Diffusion Weighted Magnetic Resonance Imaging in the Assessment of Renal Function and Parenchymal Changes in Chronic Kidney Disease: A Preliminary Study[J]. Ann Transplant, 2020, 25: e920232. DOI: 10.12659/aot.920232.
[17]
Feng YZ, Chen XQ, Yu J, et al. Intravoxel incoherent motion (IVIM) at 3.0 T: evaluation of early renal function changes in type 2 diabetic patients[J]. Abdom Radiol (NY), 2018, 43(10): 2764-2773. DOI: 10.1007/s00261-018-1555-7.
[18]
Cheng ZY, Feng YZ, Hu JJ, et al. Intravoxel incoherent motion imaging of the kidney: The application in patients with hyperuricemia[J]. J Magn Reson Imaging, 2020, 51(3): 833-840. DOI: 10.1002/jmri.26861.
[19]
Hashim E, Yuen DA, Kirpalani A. Reduced Flow in Delayed Graft Function as Assessed by IVIM Is Associated With Time to Recovery Following Kidney Transplantation[J]. J Magn Reson Imaging, 2021, 53(1): 108-117. DOI: 10.1002/jmri.27245.
[20]
Liu ZL, Xu Y, Zhang J, et al. Chronic kidney disease: pathological and functional assessment with diffusion tensor imaging at 3T MR[J]. Eur Radiol, 2015, 25(3): 652-660. DOI: 10.1007/s00330-014-3461-x.
[21]
Nassar MK, Khedr D, Abu-elfadl HG, et al. Diffusion Tensor Imaging in early prediction of renal fibrosis in patients with renal disease: Functional and histopathological correlations[J]. Int J Clin Pract, 2021, 75(4): e13918. DOI: 10.1111/ijcp.13918.
[22]
Berchtold L, Crowe LA, Friedli I, et al. Diffusion magnetic resonance imaging detects an increase in interstitial fibrosis earlier than the decline of renal function[J]. Nephrol Dial Transplant, 2020, 35(7): 1274-1276. DOI: 10.1093/ndt/gfaa007.
[23]
Feng Q, Ma ZJ, Wu JL, et al. DTI for the assessment of disease stage in patients with glomerulonephritis--correlation with renal histology[J]. Eur Radiol, 2015, 25(1): 92-98. DOI: 10.1007/s00330-014-3336-1.
[24]
Ye XJ, Cui SH, Song JW, et al. Using magnetic resonance diffusion tensor imaging to evaluate renal function changes in diabetic patients with early-stage chronic kidney disease[J]. Clin Radiol, 2019, 74(2): 116-122. DOI: 10.1016/j.crad.2018.09.011.
[25]
Razek A, Khalek AM A, Tharwat S, et al. Diffusion tensor imaging of renal cortex in lupus nephritis[J]. Jpn J Radiol, 2021. DOI: 10.1007/s11604-021-01154-0.
[26]
Cheng ZY, Lin QT, Chen PK, et al. Combined application of DTI and BOLD-MRI in the assessment of renal injury with hyperuricemia[J]. Abdom Radiol (NY), 2021, 46(4): 1694-702. DOI: 10.1007/s00261-020-02804-z.
[27]
Wang B, Li JJ, Wang YF. Magnetic resonance diffusion tensor imaging applied to rat model of contrast-induced acute kidney injury[J]. PeerJ, 2021, 9: e10620. DOI: 10.7717/peerj.10620.
[28]
Williams DS, Detre JA, Leigh JS, et al. Magnetic resonance imaging of perfusion using spin inversion of arterial water[J]. Proc Natl Acad Sci USA, 1992, 89(1): 212-216. DOI: 10.1073/pnas.89.1.212.
[29]
Roberts DA, Detre JA, Bolinger L, et al. Renal perfusion in humans: MR imaging with spin tagging of arterial water[J]. Radiology, 1995, 196(1): 281-286. DOI: 10.1148/radiology.196.1.7784582.
[30]
Cutajar M, Thomas DL, Hales PW, et al. Comparison of ASL and DCE MRI for the non-invasive measurement of renal blood flow: quantification and reproducibility[J]. Eur Radiol, 2014, 24(6): 1300-1308. DOI: 10.1007/s00330-014-3130-0.
[31]
Lu F, Yang J, Yang SH, et al. Use of Three-Dimensional Arterial Spin Labeling to Evaluate Renal Perfusion in Patients With Chronic Kidney Disease[J]. J Magn Reson Imaging, 2021. DOI: 10.1002/jmri.27609.
[32]
Cai YZ, Li ZC, Zuo PL, et al. Diagnostic value of renal perfusion in patients with chronic kidney disease using 3D arterial spin labeling[J]. J Magn Reson Imaging, 2017, 46(2): 589-94. DOI: 10.1002/jmri.25601.
[33]
Brown RS, Sun MRM, Stillman IE, et al. The utility of magnetic resonance imaging for noninvasive evaluation of diabetic nephropathy[J]. Nephrol Dial Transplant, 2020, 35(6): 970-978. DOI: 10.1093/ndt/gfz066.
[34]
Niles DJ, Artz NS, Djamali A, et al. Longitudinal Assessment of Renal Perfusion and Oxygenation in Transplant Donor-Recipient Pairs Using Arterial Spin Labeling and Blood Oxygen Level-Dependent Magnetic Resonance Imaging[J]. Invest Radiol, 2016, 51(2): 113-120. DOI: 10.1097/rli.0000000000000210.

PREV Research progress of Wallerian degeneration in the central nervous system diffusion magnetic resonance imaging
NEXT Radiological research progress on the adherence and invasion of adjacent brain tissue caused by craniopharyngioma
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn