Share:
Share this content in WeChat
X
Clinical Article
Whole spine MRI findings in endemic fluorosis
LI Zhengran  LI Siqin  LI Fan  WANG Ruijun 

Cite this article as: LI Z R, LI S Q, LI F, et al. Whole spine MRI findings in endemic fluorosis[J]. Chin J Magn Reson Imaging, 2023, 14(2): 87-91. DOI:10.12015/issn.1674-8034.2023.02.015.


[Abstract] Objective To investigate the MRI findings of the whole spine in patients with endemic skeletal fluorosis, and evaluate its MRI characteristics from a global perspective.Materials and Methods To analyze the whole spine MRI and clinical characteristics of 35 cases with endemic fluorosis and evaluate the spinal signal changes, the thickened ossification of the posterior longitudinal ligament (OPLL) and the ligamentum flavum (OLF), spinal canal stenosis, and spinal cord signal changes.Results Fat-containing marrow in the vertebral bodies with endemic fluorosis was decreased and unevenly distributed, accompanied with varying degrees of hyperostosis (100.00%). The thickness of OPLL was 4-9 (6.89±2.23) mm. The thickened OPLL was most commonly found in the cervical spine, which showed continuous thickening. The distribution of thickened OPLL in thoracic and lumbar spine was segmental. The total amount of thickened OPLL were 216 segments of spine. Of the 216 spinal segments, 158 spinal segments located in C2-T1 (73.15%), T1-L1 had 42 lesions (19.44%), L1-S1 had 16 lesions (7.41%). The thickness of OLF were 4-8 (5.25±1.44) mm. Of the 35 cases, the thickened OLF had unifocal lesion in 7 cases and multifocal lesions in 21 cases. Of 108 lesions located in C4-L5, 59 lesions located in T8-T12 (54.63%). The incidence of the thickened OLF in the thoracic and lumbar segments was significantly higher than that in the cervical segments. Spinal canal narrowing was found in 30 patients (85.71%), in which compression of the spinal cord was showed in 27 patients (77.14%) and high signal in T2WI was noted in 16 cases (45.71%), low signal in T1WI was noted in 8 cases (22.86%).Conclusions Endemic skeletal fluorosis involves a wide range of lesions. Whole spine MRI can fully reflect the abnormities of diffuse bone and paravertebral ligaments, the degree of spinal canal stenosis, spinal cord and nerve compression in the patients with endemic fluorosis, provide more accurate and comprehensive imaging support for clinical use.
[Keywords] osteofluorosis;spine;ligament ossification;spinal stenosis;spinal cord signal;magnetic resonance imaging

LI Zhengran   LI Siqin*   LI Fan   WANG Ruijun  

Medical Imaging Center, Inner Mongolia International Mongolian Hospital, Hohhot 010065, China

*Correspondence to: Li SQ, E-mail: Siqin08@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS Inner Mongolia Health Science and Technology Plan Project (No. 202202061).
Received  2022-08-11
Accepted  2023-01-12
DOI: 10.12015/issn.1674-8034.2023.02.015
Cite this article as: LI Z R, LI S Q, LI F, et al. Whole spine MRI findings in endemic fluorosis[J]. Chin J Magn Reson Imaging, 2023, 14(2): 87-91. DOI:10.12015/issn.1674-8034.2023.02.015.

[1]
CHEN G, YU B. Research progress on molecular biological mechanism of endemic skeletal fluorosis[J]. Chin J Endem, 2013, 32(4): 470-472. DOI: 10.3760/cma.j.issn.2095-4255.2013.04.034.
[2]
LIU Y, YANG Y, WEI Y, et al. sKlotho is associated with the severity of brick tea-type skeletal fluorosis in China[J/OL]. Sci Total Environ. 2020, 744(11): 140749 [2022-05-04]. https://www.sciencedirect.com/science/article/abs/pii/S004896972034273X. DOI: 10.1016/j.scitotenv.2020.140749.
[3]
SELLAMI M, RIAHI H, MAATALLAH K, et al. Skeletal fluorosis: don't miss the diagnosis![J]. Skeletal Radiol, 2020, 49(3): 345-357. DOI: 10.1007/s00256-019-03302-0.
[4]
SHAH D, DHAWALE A, CHAUDHARY K, et al. Skeletal fluorosis with thoracic myelopathy: a report of 2 cases[J]. Int J Spine Surg, 2021, 14(s4): S89-S95. DOI: 10.14444/7170.
[5]
QIAO L, LIU X, HE Y, et al. Progress of Signaling Pathways, Stress Pathways and Epigenetics in the Pathogenesis of Skeletal Fluorosis[J/OL].Int J Mol Sci. 2021, 22(21): 11932 [2022-05-12]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8584317/pdf/ijms-22-11932.pdf. DOI: 10.3390/ijms222111932.
[6]
CHEN Z, SUN Y, ZHANG F S, et al. Clinical features of familial cervical ossification of posterior longitudinal ligament[J]. J Spinal Surg, 2018, 16(1): 27-30. DOI: 10.3969/j.issn.1672-2957.2018.01.006.
[7]
ZHAO L J, SUN Y F, YU G Q, et al. The only criterion for evaluating the prevention and control effect of endemic fluorosis—interpretation of the control standard for endemic fluorosis areas (GB17017-2010)[J]. China Health Stand Manag, 2011, 2(2): 37-40.
[8]
OUYANG T, QIN Y, LUO K K, et al. miR-486-3p regulates CyclinD1 and promotes fluoride-induced osteoblast proliferation and activation[J]. Environ Toxicol, 2021, 36(9): 1817-1828. DOI: 10.1002/tox.23302.
[9]
COLLINS M T, MARCUCCI G, ANDERS H J, et al. Skeletal and extraskeletal disorders of biomineralization[J]. Nat Rev Endocrinol, 2022, 18(8): 473-489. DOI: 10.1038/s41574-022-00682-7.
[10]
MCDONALD C A, FAHEY M C, JENKIN G, et al. Umbilical cord blood cells for treatment of cerebral palsy; timing and treatment options[J]. Pediatr Res, 2018, 83(1/2): 333-344. DOI: 10.1038/pr.2017.236.
[11]
HUR J W, KIM B J, PARK J H, et al. The mechanism of ligamentum flavum hypertrophy: introducing angiogenesis as a critical link that couples mechanical stress and hypertrophy[J]. Neurosurgery, 2015, 77(2): 274-281;discussion 281-282. DOI: 10.1227/NEU.0000000000000755.
[12]
ZHANG H, LIU Y. Research progress of pathogenesis in spinal ligament ossification disease[J]. Chin J Spine Spinal Cord, 2015, 25(6): 553-557. DOI: 10.3969/j.issn.1004-406X.2015.06.13.
[13]
BOODY B S, LENDNER M, VACCARO A R. Ossification of the posterior longitudinal ligament in the cervical spine: a review[J]. Int Orthop, 2019, 43(4): 797-805. DOI: 10.1007/s00264-018-4106-5.
[14]
LE H V, WICK J B, VAN B W, et al. Ossification of the posterior longitudinal ligament: pathophysiology, diagnosis, and management[J]. J Am Acad Orthop Surg, 2022, 30(17): 820-830. DOI: 10.5435/JAAOS-D-22-00049.
[15]
CHEN J, WANG X W, WANG C, et al. Rotational stress: role in development of ossification of posterior longitudinal ligament and ligamentum flavum[J]. Med Hypotheses, 2011, 76(1): 73-76. DOI: 10.1016/j.mehy.2010.08.034.
[16]
MARTINS D E, WAJCHENBERG M, VERIDIANO J M, et al. Molecular alterations of human lumbar yellow ligament related to the process of intervertebral disk degeneration and stenosis[J]. Eur Spine J, 2019, 28(6): 1413-1422. DOI: 10.1007/s00586-019-05994-3.
[17]
KUMAR V, NAIR R P, KONGWAD L I, et al. Thoracic myelopathy secondary to ossified ligamentum flavum and dural ossification-A series of 19 cases and review of literature[J]. Interdiscip Neurosurg, 2019, 15: 78-85. DOI: 10.1016/j.inat.2018.10.021.
[18]
MD F B F, MD C G S, MD Z Q C. Progress on clinical characteristics and identification of location of thoracic ossification of the ligamentum flavum[J]. Orthop Surg, 2015, 7(2): 87-96. DOI: 10.1111/os.12165.
[19]
GUO J J, LUK K D, KARPPINEN J, et al. Prevalence, distribution, and morphology of ossification of the ligamentum flavum: a population study of one thousand seven hundred thirty-six magnetic resonance imaging scans[J]. Spine (Phila Pa 1976), 2010, 35(1): 51-56. DOI: 10.1097/BRS.0b013e3181b3f779.
[20]
LANG N, YUAN H S, WANG H L, et al. Epidemiological survey of ossification of the ligamentum flavum in thoracic spine: CT imaging observation of 993 cases[J]. Eur Spine J, 2013, 22(4): 857-862. DOI: 10.1007/s00586-012-2492-8.
[21]
HUR H, LEE J K, LEE J H, et al. Thoracic myelopathy caused by ossification of the ligamentum flavum[J]. J Korean Neurosurg Soc, 2009, 46(3): 189-194. DOI: 10.3340/jkns.2009.46.3.189.
[22]
GAO R, YUAN W, YANG L L, et al. Clinical features and surgical outcomes of patients with thoracic myelopathy caused by multilevel ossification of the ligamentum flavum[J]. Spine J, 2013, 13(9): 1032-1038. DOI: 10.1016/j.spinee.2013.02.034.
[23]
YAN C, TAN H Y, JI C L, et al. The clinical value of three-dimensional measurement in the diagnosis of thoracic myelopathy caused by ossification of the ligamentum flavum[J]. Quant Imaging Med Surg, 2021, 11(5): 2040-2051. DOI: 10.21037/qims-20-713.
[24]
LI F N, LI Z H, HUANG X, et al. The treatment of mild cervical spondylotic myelopathy with increased signal intensity on T2-weighted magnetic resonance imaging[J]. Spinal Cord, 2014, 52(5): 348-353. DOI: 10.1038/sc.2014.11.
[25]
MACHINO M, ANDO K, KOBAYASHI K, et al. Postoperative resolution of MR T2 increased signal intensity in cervical spondylotic myelopathy: the impact of signal change resolution on the outcomes[J/OL]. Spine (Phila Pa 1976), 2019, 44(21): E1241-E1247 [2021-12-21]. https://journals.lww.com/spinejournal/Abstract/2019/11010/Postoperative_Resolution_of_MR_T2_Increased_Signal.4.aspx. DOI: 10.1097/BRS.0000000000003128.
[26]
MASTRONARDI L, ELSAWAF A, ROPERTO R, et al. Prognostic relevance of the postoperative evolution of intramedullary spinal cord changes in signal intensity on magnetic resonance imaging after anterior decompression for cervical spondylotic myelopathy[J]. J Neurosurg Spine, 2007, 7(6): 615-622. DOI: 10.3171/SPI-07/12/615.
[27]
NAM T H, LEE J W, YEOM J S, et al. Increased signal intensity on postoperative T2-weighted axial images in cervical spondylotic myelopathy: patterns of changes and associated impact on outcomes[J]. J Clin Neurosci, 2021, 90: 244-250. DOI: 10.1016/j.jocn.2021.06.007.
[28]
KWON S Y, SHIN J J, LEE J H, et al. Prognostic factors for surgical outcome in spinal cord injury associated with ossification of the posterior longitudinal ligament (OPLL)[J/OL]. J Orthop Surg Res, 2015, 10: 94 [2021-12-21]. https://josr-online.biomedcentral.com/articles/10.1186/s13018-015-0235-3. DOI: 10.1186/s13018-015-0235-3.
[29]
ZHANG H, WANG C, WANG D X, et al. Predictive risk factors of poor preliminary postoperative outcome for thoracic ossification of the ligamentum flavum[J]. Orthop Surg, 2021, 13(2): 408-416. DOI: 10.1111/os.12884.
[30]
GULATI V, CHALIAN M, YI J, et al. Sclerotic bone lesions caused by non-infectious and non-neoplastic diseases: a review of the imaging and clinicopathologic findings[J]. Skeletal Radiol, 2021, 50(5): 847-869. DOI: 10.1007/s00256-020-03644-0.
[31]
NUDELMAN B, MITTAL A, ROSINSKI A, et al. Whole-spine magnetic resonance imaging: a review of suggested indications[J/OL]. JBJS Rev, 2021, 9(7) [2021-12-21]. https://journals.lww.com/jbjsreviews/Abstract/2021/07000/Whole_Spine_Magnetic_Resonance_Imaging__A_Review.4.aspx. DOI: 10.2106/JBJS.RVW.20.00267.
[32]
SHEPARD N, SAMIM M, KIM Y, et al. A practical approach to spine magnetic resonance imaging[J/OL]. JBJS Rev, 2020, 8(3): e0099 [2022-03-08]. https://journals.lww.com/jbjsreviews/Abstract/2020/03000/A_Practical_Approach_to_Spine_Magnetic_Resonance.7.aspx. DOI: 10.2106/JBJS.RVW.19.00099.
[33]
SMORGICK Y, GRANEK T, MIROVSKY Y, et al. Routine sagittal whole-spine magnetic resonance imaging in finding incidental spine lesions[J]. Magn Reson Mater Phy, 2021, 34(3): 421-426. DOI: 10.1007/s10334-020-00882-0.

PREV The value of ADC texture analysis in differential diagnosis of ovarian epithelial tumors
NEXT Dynamic changes of percent amplitude of fluctuation in sleep deprivation based on resting-state fMRI
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn