Share:
Share this content in WeChat
X
Review
Research progress on circadian rhythms in multimodal MRI of the brain
XING Hanqi  DAI Hui 

Cite this article as: XING H Q, DAI H. Research progress on circadian rhythms in multimodal MRI of the brain[J]. Chin J Magn Reson Imaging, 2024, 15(3): 190-195. DOI:10.12015/issn.1674-8034.2024.03.031.


[Abstract] The presence of circadian rhythms causes diurnal fluctuations in brain structure and function. Currently, most neuroimaging studies do not control for the biological variable of time of day, making results less reproducible as well as complicating interpretation. In these years, the rapid development of multimodal MRI, voxel-based morphometry (VBM), diffusion magnetic resonance imaging (dMRI), functional magnetic resonance imaging (fMRI), magnetic resonance spectroscopy (MRS), and arterial spin labeling (ASL) methods have been used to study the influence of circadian rhythm on brain structure and function. Most studies have found significant effects of time of day on brain structure and function, but there are inconsistencies in the results reported. Current research has focused only on daytime time points and two or three-time points during the day, lacking research on nighttime time points and multiple time points during the day. We provide a review of recent progress in the study of circadian rhythms in MRI of the brain in order to increase awareness of time as a biological variable that influences neuroimaging studies.
[Keywords] circadian rhythm;brain structure;brain functional;multimodality;magnetic resonance imaging

XING Hanqi1   DAI Hui1, 2, 3*  

1 Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, China

2 Institute of Medical Imaging, Soochow University, Suzhou 215006, China

3 Suzhou Key Laboratory of Intelligent Medicine and Equipment, Suzhou 215123, China

Corresponding author: DAI H, E-mail: huizi198208@126.com

Conflicts of interest   None.

Received  2023-10-29
Accepted  2024-02-23
DOI: 10.12015/issn.1674-8034.2024.03.031
Cite this article as: XING H Q, DAI H. Research progress on circadian rhythms in multimodal MRI of the brain[J]. Chin J Magn Reson Imaging, 2024, 15(3): 190-195. DOI:10.12015/issn.1674-8034.2024.03.031.

[1]
YAMADA R G, UEDA H R. The circadian clock ticks in organoids[J/OL]. Embo j, 2022, 41(2): e110157 [2023-10-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8762543/. DOI: 10.15252/embj.2021110157.
[2]
XU P, BERTO S, KULKARNI A, et al. NPAS4 regulates the transcriptional response of the suprachiasmatic nucleus to light and circadian behavior[J/OL]. Neuron, 2021, 109(20): 3268-3282.e6 [2023-10-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8542585/. DOI: 10.1016/j.neuron.2021.07.026.
[3]
LOGAN R W, MCCLUNG C A. Rhythms of life: circadian disruption and brain disorders across the lifespan[J]. Nat Rev Neurosci, 2019, 20(1): 49-65. DOI: 10.1038/s41583-018-0088-y.
[4]
LO E H, ALBERS G W, DICHGANS M, et al. Circadian biology and stroke[J]. Stroke, 2021, 52(6): 2180-2190. DOI: 10.1161/strokeaha.120.031742.
[5]
ESPOSITO E, LI W, E T M, et al. Potential circadian effects on translational failure for neuroprotection[J]. Nature, 2020, 582(7812): 395-398. DOI: 10.1038/s41586-020-2348-z.
[6]
MEYER N, HARVEY A G, LOCKLEY S W, et al. Circadian rhythms and disorders of the timing of sleep[J]. Lancet, 2022, 400(10357): 1061-1078. DOI: 10.1016/s0140-6736(22)00877-7.
[7]
HAUPT S, ECKSTEIN M L, WOLF A, et al. Eat, train, sleep-retreat? Hormonal interactions of intermittent fasting, Exercise and circadian rhythm[J/OL]. Biomolecules, 2021, 11(4): 516 [2023-10-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8065500/. DOI: 10.3390/biom11040516.
[8]
SERIN Y, ACAR TEK N. Effect of circadian rhythm on metabolic processes and the regulation of energy balance[J]. Ann Nutr Metab, 2019, 74(4): 322-330. DOI: 10.1159/000500071.
[9]
DOUMA L G, GUMZ M L. Circadian clock-mediated regulation of blood pressure[J]. Free Radic Biol Med, 2018, 119: 108-114. DOI: 10.1016/j.freeradbiomed.2017.11.024.
[10]
LIN J, KUANG H, JIANG J, et al. Circadian rhythms in cardiovascular function: Implications for cardiac diseases and therapeutic opportunities[J/OL]. Med Sci Monit, 2023, 29: e942215 [2023-10-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10675984/. DOI: 10.12659/msm.942215.
[11]
ALENEZI H, OZKAN J, WILLCOX M, et al. Differential gene expression of the healthy conjunctiva during the day[J/OL]. Cont Lens Anterior Eye, 2022, 45(4): 101494 [2023-10-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC34315655/. DOI: 10.1016/j.clae.2021.101494.
[12]
VALDEZ P. Circadian rhythms in attention[J]. Yale J Biol Med, 2019, 92(1): 81-92.
[13]
TAKEUCHI S, SHIMIZU K, FUKADA Y, et al. The circadian clock in the piriform cortex intrinsically tunes daily changes of odor-evoked neural activity[J/OL]. Commun Biol, 2023, 6(1): 332 [2023-10-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10043281/. DOI: 10.1038/s42003-023-04691-8.
[14]
NAVARRO-LEDESMA S, GONZALEZ-MUÑOZ A, GARCÍA RÍOS M C, et al. Circadian variation of blood pressure in patients with chronic musculoskeletal pain: A cross-sectional study[J/OL]. Int J Environ Res Public Health, 2022, 19(11): 6481 [2023-10-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9180615/. DOI: 10.3390/ijerph19116481.
[15]
SENGUPTA S, TANG S Y, DEVINE J C, et al. Circadian control of lung inflammation in influenza infection [J/OL]. Nat Commun, 2019, 10(1): 4107 [2023-10-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6739310/. DOI: 10.1038/s41467-019-11400-9.
[16]
BAKSA D, GECSE K, KUMAR S, et al. Circadian Variation of Migraine Attack Onset: A Review of Clinical Studies[J/OL]. Biomed Res Int, 2019, 2019: 4616417 [2023-10-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6732618/. DOI: 10.1155/2019/4616417.
[17]
ELLIOTT W J. Circadian variation in the timing of stroke onset: a meta-analysis[J]. Stroke, 1998, 29(5): 992-996. DOI: 10.1161/01.str.29.5.992.
[18]
PETER-DEREX L, DEREX L. Wake-up stroke: From pathophysiology to management[J/OL]. Sleep Med Rev, 2019, 48: 101212 [2023-10-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC31600679/. DOI: 10.1016/j.smrv.2019.101212.
[19]
RANITI M B, ALLEN N B, SCHWARTZ O, et al. Sleep duration and sleep quality: Associations with depressive symptoms across adolescence[J]. Behav Sleep Med, 2017, 15(3): 198-215. DOI: 10.1080/15402002.2015.1120198.
[20]
DAMATO A R, HERZOG E D. Circadian clock synchrony and chronotherapy opportunities in cancer treatment[J]. Semin Cell Dev Biol, 2022, 126: 27-36. DOI: 10.1016/j.semcdb.2021.07.017.
[21]
YIM W Y, XIONG T, GENG B, et al. Donor circadian clock influences the long-term survival of heart transplantation by immunoregulation[J]. Cardiovasc Res, 2023, 119(12): 2202-2212. DOI: 10.1093/cvr/cvad114.
[22]
HERMIDA R C, CRESPO J J, DOMÍNGUEZ-SARDIÑA M, et al. Bedtime hypertension treatment improves cardiovascular risk reduction: the Hygia Chronotherapy Trial[J]. Eur Heart J, 2020, 41(48): 4565-4576. DOI: 10.1093/eurheartj/ehz754.
[23]
AWAD K, SERBAN M C, PENSON P, et al. Effects of morning vs evening statin administration on lipid profile: A systematic review and meta-analysis[J/OL]. J Clin Lipidol, 2017, 11(4): 972-85.e9 [2023-10-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC28826569/. DOI: 10.1016/j.jacl.2017.06.001.
[24]
WALTON J C, WALKER W H, 2nd, BUMGARNER J R, et al. Circadian variation in efficacy of medications[J]. Clin Pharmacol Ther, 2021, 109(6): 1457-1488. DOI: 10.1002/cpt.2073.
[25]
QIAN J, SCHEER F. Circadian system and glucose metabolism: Implications for physiology and disease[J]. Trends Endocrinol Metab, 2016, 27(5): 282-293. DOI: 10.1016/j.tem.2016.03.005.
[26]
LYONS L C, GREEN C L, ESKIN A. Intermediate-term memory is modulated by the circadian clock[J]. J Biol Rhythms, 2008, 23(6): 538-542. DOI: 10.1177/0748730408325359.
[27]
PALADA V, GILRON I, CANLON B, et al. The circadian clock at the intercept of sleep and pain[J]. Pain, 2020, 161(5): 894-900. DOI: 10.1097/j.pain.0000000000001786.
[28]
NAKAMURA K, BROWN R A, NARAYANAN S, et al. Diurnal fluctuations in brain volume: Statistical analyses of MRI from large populations[J]. Neuroimage, 2015, 118: 126-32. DOI: 10.1016/j.neuroimage.2015.05.077.
[29]
TREFLER A, SADEGHI N, THOMAS A G, et al. Impact of time-of-day on brain morphometric measures derived from T1-weighted magnetic resonance imaging[J]. Neuroimage, 2016, 133: 41-52. DOI: 10.1016/j.neuroimage.2016.02.034.
[30]
TUURA R O, VOLK C, CALLAGHAN F, et al. Sleep-related and diurnal effects on brain diffusivity and cerebrospinal fluid flow[J/OL]. Neuroimage, 2021, 241: 118420 [2023-10-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC34302966/. DOI: 10.1016/j.neuroimage.2021.118420.
[31]
KARCH J D, FILEVICH E, WENGER E, et al. Identifying predictors of within-person variance in MRI-based brain volume estimates[J]. Neuroimage, 2019, 200: 575-589. DOI: 10.1016/j.neuroimage.2019.05.030.
[32]
ZAHID U, HEDGES E P, DIMITROV M, et al. Impact of physiological factors on longitudinal structural MRI measures of the brain[J/OL]. Psychiatry Res Neuroimaging, 2022, 321: 111446 [2023-10-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8924876/. DOI: 10.1016/j.pscychresns.2022.111446.
[33]
FAME R M, LEHTINEN M K. Emergence and developmental roles of the cerebrospinal fluid system[J]. Dev Cell, 2020, 52(3): 261-275. DOI: 10.1016/j.devcel.2020.01.027.
[34]
HABLITZ L M, PLÁ V, GIANNETTO M, et al. Circadian control of brain glymphatic and lymphatic fluid flow[J/OL]. Nat Commun, 2020, 11(1): 4411 [2023-10-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7468152/. DOI: 10.1038/s41467-020-18115-2.
[35]
NILSSON C, STÅHLBERG F, THOMSEN C, et al. Circadian variation in human cerebrospinal fluid production measured by magnetic resonance imaging[J/OL]. Am J Physiol, 1992, 262(1Pt 2): R20-R24 [2023-10-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1733335/. DOI: 10.1152/ajpregu.1992.262.1.R20.
[36]
TAKAHASHI H, TANAKA H, FUJITA N, et al. Variation in supratentorial cerebrospinal fluid production rate in one day: measurement by nontriggered phase-contrast magnetic resonance imaging[J]. Jpn J Radiol, 2011, 29(2): 110-115. DOI: 10.1007/s11604-010-0525-y.
[37]
YU L, HU X, LI H, et al. Perivascular spaces, glymphatic system and MR[J/OL]. Front Neurol, 2022, 13: 844938 [2023-10-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9110928/. DOI: 10.3389/fneur.2022.844938.
[38]
BARISANO G, SHEIKH-BAHAEI N, LAW M, et al. Body mass index, time of day and genetics affect perivascular spaces in the white matter[J]. J Cereb Blood Flow Metab, 2021, 41(7): 1563-1578. DOI: 10.1177/0271678x20972856.
[39]
XU Y H, DING L. A review of brain tissue microstructural imaging based on diffusion magnetic resonance[J]. Chin J Biomed Eng, 2021, 40(3): 354-363. DOI: 10.3969/j.issn.0258-8021.2021.03.11.
[40]
HAO X, LIU Z, HE S, et al. Application of DTI and fMRI in moyamoya disease[J/OL]. Front Neurol, 2022, 13: 948830 [2023-10-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9391058/. DOI: 10.3389/fneur.2022.948830.
[41]
HUNG Y, UCHIDA M, GAILLARD S L, et al. Cingulum-Callosal white-matter microstructure associated with emotional dysregulation in children: A diffusion tensor imaging study[J/OL]. Neuroimage Clin, 2020, 27: 102266 [2023-10-29]. https://pubmed.ncbi.nlm.nih.gov/32408198/. DOI: 10.1016/j.nicl.2020.102266.
[42]
JIANG C, ZHANG L, ZOU C, et al. Diurnal microstructural variations in healthy adult brain revealed by diffusion tensor imaging[J/OL]. PLoS One, 2014, 9(1): e84822 [2023-10-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3882241/. DOI: 10.1371/journal.pone.0084822.
[43]
VOLDSBEKK I, MAXIMOV, II, ZAK N, et al. Evidence for wakefulness-related changes to extracellular space in human brain white matter from diffusion-weighted MRI[J/OL]. Neuroimage, 2020, 212: 116682 [2023-10-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC32114147/. DOI: 10.1016/j.neuroimage.2020.116682.
[44]
ELVSÅSHAGEN T, NORBOM L B, PEDERSEN P, et al. Widespread changes in white matter microstructure after a day of waking and sleep deprivation[J/OL]. PLoS One, 2015, 10(5): e0127351 [2023-10-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447359/. DOI: 10.1371/journal.pone.0127351.
[45]
THOMAS C, SADEGHI N, NAYAK A, et al. Impact of time-of-day on diffusivity measures of brain tissue derived from diffusion tensor imaging[J]. Neuroimage, 2018, 173: 25-34. DOI: 10.1016/j.neuroimage.2018.02.026.
[46]
BOLLETTINI I, MELLONI E M, AGGIO V, et al. Clock genes associate with white matter integrity in depressed bipolar patients[J]. Chronobiol Int, 2017, 34(2): 212-224. DOI: 10.1080/07420528.2016.1260026.
[47]
HOWARTH C, MISHRA A, HALL C N. More than just summed neuronal activity: how multiple cell types shape the BOLD response[J/OL]. Philos Trans R Soc Lond B Biol Sci, 2021, 376(1815): 20190630 [2023-10-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7116385/. DOI: 10.1098/rstb.2019.0630.
[48]
QIU J, WANG B X, WANG L, et al. Research on regional homogeneity of resting state functional magnetic resonance imaging in first-episode depressive disorder patients[J]. Chin J Magn Reson Imag, 2020, 11(9): 721-725. DOI: 10.12015/issn.1674-8034.2020.09.001.
[49]
LI Y M, YANG H G, FAN G G. Resting state amplitude of low-frequency fluctuation alterations of mild cognitive impairment in patients with multiple system atrophy[J]. Chin J Magn Reson Imag, 2020, 11(4): 246-252. DOI: 10.12015/issn.1674-8034.2020.04.002.
[50]
DRYBURGH E, MCKENNA S, REKIK I. Predicting full-scale and verbal intelligence scores from functional connectomic data in individuals with autism spectrum disorder[J]. Brain Imaging Behav, 2020, 14(5): 1769-1778. DOI: 10.1007/s11682-019-00111-w.
[51]
FAFROWICZ M, CEGLAREK A, OLSZEWSKA J, et al. Dynamics of working memory process revealed by independent component analysis in an fMRI study[J/OL]. Sci Rep, 2023, 13(1): 2900 [2023-10-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9938907/. DOI: 10.1038/s41598-023-29869-2.
[52]
HODKINSON D J, O'DALY O, ZUNSZAIN P A, et al. Circadian and homeostatic modulation of functional connectivity and regional cerebral blood flow in humans under normal entrained conditions[J]. J Cereb Blood Flow Metab, 2014, 34(9): 1493-1499. DOI: 10.1038/jcbfm.2014.109.
[53]
FACER-CHILDS E R, CAMPOS B M, MIDDLETON B, et al. Circadian phenotype impacts the brain's resting-state functional connectivity, attentional performance, and sleepiness[J/OL]. Sleep, 2019, 42(5): zsz033 [2023-10-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6519915/. DOI: 10.1093/sleep/zsz033.
[54]
JIANG C, YI L, SU S, et al. Diurnal variations in neural activity of healthy human brain decoded with resting-state blood oxygen level dependent fMRI[J/OL]. Front Hum Neurosci, 2016, 10: 634 [2023-10-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5169030/. DOI: 10.3389/fnhum.2016.00634.
[55]
FACER-CHILDS E R, DE CAMPOS B M, MIDDLETON B, et al. Temporal organisation of the brain's intrinsic motor network: The relationship with circadian phenotype and motor performance[J/OL]. Neuroimage, 2021, 232: 117840 [2023-10-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8214225/. DOI: 10.1016/j.neuroimage.2021.117840.
[56]
FAFROWICZ M, BOHATEREWICZ B, CEGLAREK A, et al. Beyond the low frequency fluctuations: Morning and evening differences in human brain[J/OL]. Front Hum Neurosci, 2019, 13: 288 [2023-10-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718916/. DOI: 10.3389/fnhum.2019.00288.
[57]
FARAHANI F V, KARWOWSKI W, D'ESPOSITO M, et al. Diurnal variations of resting-state fMRI data: A graph-based analysis[J/OL]. Neuroimage, 2022, 256: 119246 [2023-10-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9799965/. DOI: 10.1016/j.neuroimage.2022.119246.
[58]
CORDANI L, TAGLIAZUCCHI E, VETTER C, et al. Endogenous modulation of human visual cortex activity improves perception at twilight[J/OL]. Nat Commun, 2018, 9(1): 1274 [2023-10-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5893589/. DOI: 10.1038/s41467-018-03660-8.
[59]
XING H, WU Z, CHANG Y, et al. Resting-state fMRI study of vigilance under circadian and homeostatic modulation based on fractional amplitude of low-frequency fluctuation and regional homogeneity in humans under normal entrained conditions[J]. J Magn Reson Imaging, 2024, 59(1): 211-222. DOI: 10.1002/jmri.28750.
[60]
MUTO V, JASPAR M, MEYER C, et al. Local modulation of human brain responses by circadian rhythmicity and sleep debt[J]. Science, 2016, 353(6300): 687-690. DOI: 10.1126/science.aad2993.
[61]
STEEL A, THOMAS C, TREFLER A, et al. Finding the baby in the bath water-evidence for task-specific changes in resting state functional connectivity evoked by training[J]. Neuroimage, 2019, 188: 524-538. DOI: 10.1016/j.neuroimage.2018.12.038.
[62]
GRATTON C, LAUMANN T O, NIELSEN A N, et al. Functional brain networks are dominated by stable group and individual factors, not cognitive or daily variation[J/OL]. Neuron, 2018, 98(2): 439-452.e5 [2023-10-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5912345/. DOI: 10.1016/j.neuron.2018.03.035.
[63]
BYRNE J E M, HUGHES M E, ROSSELL S L, et al. Time of day differences in neural reward functioning in healthy young men[J]. J Neurosci, 2017, 37(37): 8895-8900. DOI: 10.1523/jneurosci.0918-17.2017.
[64]
MASTERSON T D, KIRWAN C B, DAVIDSON L E, et al. Neural reactivity to visual food stimuli is reduced in some areas of the brain during evening hours compared to morning hours: an fMRI study in women[J]. Brain Imaging Behav, 2016, 10(1): 68-78. DOI: 10.1007/s11682-015-9366-8.
[65]
FARAHANI F V, FAFROWICZ M, KARWOWSKI W, et al. Identifying diurnal variability of brain connectivity patterns using graph theory[J/OL]. Brain Sci, 2021, 11(1): 111 [2023-10-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7830976/. DOI: 10.3390/brainsci11010111.
[66]
SINGH P, TOREK M WA, CEGLAREK A, et al. Analysis of fMRI signals from working memory tasks and resting-state of brain: Neutrosophic-entropy-based clustering algorithm[J/OL]. Int J Neural Syst, 2022, 32(4): 2250012 [2023-10-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC35179104/. DOI: 10.1142/s0129065722500125.
[67]
ROY D S, ZHANG Y, HALASSA M M, et al. Thalamic subnetworks as units of function[J]. Nat Neurosci, 2022, 25(2): 140-153. DOI: 10.1038/s41593-021-00996-1.
[68]
MAIRE M, REICHERT C F, GABEL V, et al. Human brain patterns underlying vigilant attention: impact of sleep debt, circadian phase and attentional engagement[J/OL]. Sci Rep, 2018, 8(1): 970 [2023-10-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5772468/. DOI: 10.1038/s41598-017-17022-9.
[69]
BEDINI M, BALDAUF D. Structure, function and connectivity fingerprints of the frontal eye field versus the inferior frontal junction: A comprehensive comparison[J]. Eur J Neurosci, 2021, 54(4): 5462-5506. DOI: 10.1111/ejn.15393.
[70]
KIM H. Attention- versus significance-driven memory formation: Taxonomy, neural substrates, and meta-analyses[J/OL]. Neurosci Biobehav Rev, 2022, 138: 104685 [2023-10-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC35526692/. DOI: 10.1016/j.neubiorev.2022.104685.
[71]
ORBAN C, KONG R, LI J, et al. Time of day is associated with paradoxical reductions in global signal fluctuation and functional connectivity[J/OL]. PLoS Biol, 2020, 18(2): e3000602 [2023-10-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7028250/. DOI: 10.1371/journal.pbio.3000602.
[72]
VAISVILAITE L, HUSHAGEN V, GRØNLI J, et al. Time-of-day effects in resting-state functional magnetic resonance imaging: Changes in effective connectivity and blood oxygenation level dependent signal[J]. Brain Connect, 2022, 12(6): 515-523. DOI: 10.1089/brain.2021.0129.
[73]
HUO M, ZHAN S H, TAN W L. Research progress of 1H-MRS in evaluating brain metabolites in patients with chronic low back pain[J]. Chin Imag J Integr Tradit West Med, 2021, 19(6): 594-598. DOI: 10.3969/j.issn.1672-0512.2021.06.023.
[74]
GUDMUNDSON A T, KOO A, VIROVKA A, et al. Meta-analysis and open-source database for in vivo brain Magnetic Resonance spectroscopy in health and disease[J/OL]. Anal Biochem, 2023, 676: 115227 [2023-10-29]. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10561665/. DOI: 10.1016/j.ab.2023.115227.
[75]
VOLK C, JARAMILLO V, MERKI R, et al. Diurnal changes in glutamate+glutamine levels of healthy young adults assessed by proton magnetic resonance spectroscopy[J]. Hum Brain Mapp, 2018, 39(10): 3984-3992. DOI: 10.1002/hbm.24225.
[76]
ARM J, AL-IEDANI O, LEA R, et al. Diurnal variability of cerebral metabolites in healthy human brain with 2D localized correlation spectroscopy (2D L-COSY)[J]. J Magn Reson Imaging, 2019, 50(2): 592-601. DOI: 10.1002/jmri.26642.
[77]
MARTÍN-NOGUEROL T, KIRSCH C F E, MONTESINOS P, et al. Arterial spin labeling for head and neck lesion assessment: technical adjustments and clinical applications[J]. Neuroradiology, 2021, 63(12): 1969-1983. DOI: 10.1007/s00234-021-02772-1.
[78]
ELVSÅSHAGEN T, MUTSAERTS H J, ZAK N, et al. Cerebral blood flow changes after a day of wake, sleep, and sleep deprivation[J]. Neuroimage, 2019, 186: 497-509. DOI: 10.1016/j.neuroimage.2018.11.032.

PREV Epithelioid hemangioendothelioma involving both liver and lung: One case report
NEXT Advances in brain functional imaging of abnormal emotional circuits associated with premenstrual dysphoric disorder
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn