分享:
分享到微信朋友圈
X
综述
酰胺质子转移磁共振成像在帕金森病中的研究进展
米日班·买买提库尔班 张树贤 马景旭 王红

Cite this article as: MIRIBAN·M M T K E B, ZHANG S X, MA J X, et al. Research progress of amide proton transfer magnetic resonance imaging in Parkinson's disease[J]. Chin J Magn Reson Imaging, 2023, 14(6): 94-98.本文引用格式:米日班·买买提库尔班, 张树贤, 马景旭, 等. 酰胺质子转移磁共振成像在帕金森病中的研究进展[J]. 磁共振成像, 2023, 14(6): 94-98. DOI:10.12015/issn.1674-8034.2023.06.016.


[摘要] 酰胺质子转移(amide proton transfer, APT)成像技术是近几年在化学交换饱和转移(chemical exchange saturation transfer, CEST)成像的基础上发展起来的一种新型MRI技术,它是在细胞和分子水平上对蛋白质浓度和pH进行无创检测和评价,可以间接反映细胞内代谢变化及病理生理信息。帕金森病(Parkinson's disease, PD)是第二常见的神经退行性疾病,目前尚无法根治,患者靠服药来控制病情、维持日常生活。早发现、早诊断PD是治疗的关键,可使患者受益巨大。通过APT成像技术可以评估 PD患者各脑区蛋白质代谢状态,有助于实现PD的早期诊断。现就APT技术的基本原理、在PD中的研究进展及技术应用面临的挑战进行综述,旨在更好地了解APT成像技术,并为今后的研究提供参考和借鉴。
[Abstract] Amide proton transfer (APT) imaging technology is a new and original MRI technology developed in recent years on the basis of chemical exchange saturation transfer (CEST) imaging, which is based on the non-invasive detection and evaluation of protein concentration and pH at the cellular and molecular level, indirectly reflects the metabolic changes and physiological and pathological information in living cells. Parkinson's disease (PD) is the second most common neurodegenerative disease, which has not been eradicated yet, patients take drugs to control symptoms and maintain daily life. Early detection and diagnosis of PD is the key to treatment, and patients benefit greatly. APT imaging technology can evaluate the protein metabolism status of various brain regions in patients with PD and help to realize the early diagnosis of PD. This article reviews the basic principles of APT MRI technology, research progress in PD, and challenges faced in its application, aiming to better understand the APT imaging technology and provide reference for future research.
[关键词] 帕金森病;磁共振成像;酰胺质子转移成像;化学交换饱和转移;研究进展;早期诊断;鉴别诊断
[Keywords] Parkinson's disease;magnetic resonance imaging;amide proton transfer imaging;chemical exchange saturation transfer;research progress;early diagnosis;differential diagnosis

米日班·买买提库尔班    张树贤    马景旭    王红 *  

新疆医科大学第二附属医院影像中心,乌鲁木齐 830063

通信作者:王红,E-mail:wangh_xj@163.com

作者贡献声明:王红设计本研究的方案,对稿件重要内容进行了修改,获得了新疆维吾尔自治区自然科学基金(编号:2019D01C227)的资助;米日班·买买提库尔班起草和撰写稿件,获取、分析或解释本研究的数据/文献;张树贤、马景旭获取、分析或解释本研究的数据,对稿件重要内容进行了修改,马景旭获得了新疆维吾尔自治区自然科学基金(编号:2022D01C272)的资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 新疆维吾尔自治区自然科学基金 2022D01C272,2019D01C227
收稿日期:2023-02-03
接受日期:2023-04-20
中图分类号:R445.2  R742.5 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.06.016
本文引用格式:米日班·买买提库尔班, 张树贤, 马景旭, 等. 酰胺质子转移磁共振成像在帕金森病中的研究进展[J]. 磁共振成像, 2023, 14(6): 94-98. DOI:10.12015/issn.1674-8034.2023.06.016.

0 前言

       帕金森病(Parkinson's disease, PD)是当今世界上仍然无法治愈的中老年人群中常见的中枢神经系统退行性疾病之一。2019年,全世界大约有851万PD患者,中国患者约284万人,占33.37%,是拥有最多患者的国家[1]。随着中国社会老龄化程度的加深,PD患病率急剧上升,有学者预测,2030年中国PD患者将占全球PD患者的57%[2]。目前,PD没有临床上公认的生物学诊断标志物,并且大多数退行性疾病又具有共同的临床症状,所以仅靠患者的临床症状和体征不能精准诊断PD,即使是资深的神经科医师,其误诊率也高达25.32%[3]

       传统MRI技术作为一种非侵入性和高保真成像方式,通常不会显示PD患者的特定变化。先进的MRI技术如扩散张量成像(diffusion tensor imaging, DTI)[4]、磁敏感加权成像[5]、平均表观扩散加权成像[6]、动脉自旋标记[7]、定量磁敏感图[8]、磁共振波谱成像[9]、功能磁共振成像[10]和神经突方向离散度与密度成像[11]均被证实是有益于PD的早期诊断,其中功能成像的发展还提供潜在的大脑功能和结构性连接的信息,但是没有较好地显示PD患者代谢状态的MRI技术。正电子发射断层扫描(positron emission tomography, PET)或单光子发射计算机断层成像(single-photon emission computed tomography, SPECT)的神经成像方式已被证明能有效检测淀粉样蛋白和神经退行性变的病理变化[12],但PET及SPECT检测受到其高成本、高辐射的限制,无法常规应用于检测PD蛋白质代谢状态。因此,探索敏感度高、无辐射、低耗以及能可靠评估PD患者的蛋白质代谢状态、实现早期精准诊断PD的MRI技术变得极为重要。而酰胺质子转移(amide proton transfer, APT)成像作为一种新型分子成像技术,能反映移动大分子的浓度,如蛋白质和多肽。本文主要对APT成像的基本原理及其在PD中的研究进展、技术的局限性及前景进行阐述,旨在更好地了解APT技术,并为PD今后的研究提供参考依据。

1 APT成像技术原理及特点

1.1 化学交换饱和转移成像

       分子成像正在成为追求精准医学不可或缺的工具。化学交换饱和转移(chemical exchange saturation transfer, CEST)成像是一种源自磁化传递(magnetization transfer, MT)的一种相对新颖的代谢成像方式[13],由WARD等[14]在2000年首先报道,可以检测非常低浓度的内源性移动蛋白/肽和神经代谢物。在CEST成像中,存在于羟基(-OH)、酰胺基(-CONH)和胺基(-NH2)等化学官能团上的可交换氢质子与水中的氢质子发生空间位置上的交换[15, 16],导致主体水信号降低,并不断重复此过程,可以起到放大作用。这就是CEST成像能够间接放大低浓度从而检测到溶质的原因。

       随着CEST扫描技术和分析方法的不断完善,当前的CEST效应可用多池拟合模型来描述,即直接水饱和效应、APT效应、核奥氏效应(nuclear Overhauser effect, NOE)及半固态磁化转移比(semi-solid magnetization transfer contrast, MTC)效应等。近年来CEST技术已经成功地应用于谷氨酸[17]、肌酸[18]、糖原[19]、蛋白质[20]等多种物质的检测。

1.2 APT成像

       APT技术是由CEST技术衍生而来的[21],利用组织内源性移动蛋白和肽中的酰胺质子来生成图像,又称酰胺CEST成像。APT成像通常根据水频率在±3.5 ppm偏移处的非对称磁化转移率(magnetization transfer asymmetry, MTRasym)分析进行评估[22],其中酰胺质子转移比以外的效应包括在-3.5 ppm的移动大分子中的脂肪族质子的交换中继NOE(relayed NOE, rNOE)[23]和传统MTC效应的固有不对称性,在执行不对称分析时会部分地相互补偿[24]。因此,由MTRasym定义的APT图像因这些多重效应的存在,称为APT加权(APT-weighted, APTw)图像。为了在体内量化更纯的APT信号,目前已提出三维平面回波成像快照[25]、外推半固体磁化转移参考(extrapolated semi-solid magnetization transfer reference, EMR)[26]以及多项式和洛伦兹线形拟合等方法[27]

       APT信号强度与细胞中的游离蛋白质浓度、pH值和温度相关[21]。由于人体的体温比较稳定,因此,主要作用因素是游离蛋白质的浓度和pH。在体内pH值不变时,随着酰胺质子浓度的增加,交换速度加快;相反,当游离蛋白质和多肽在组织中的浓度稳定时,PH降低,交换速度降低,APT信号强度降低。已有研究表明,肿瘤66%的APT信号来自于游离蛋白质浓度的改变,而另外34%来自于pH值的改变[28]

       APT技术已经广泛地应用于各个临床领域,例如脑肿瘤[29, 30, 31, 32]、脑卒中[33]、小儿中枢神经系统疾病[34, 35]、神经退行性疾病(如阿尔茨海默病、多发性硬化)[36, 37]、创伤性脑损伤[38]、乳腺癌[39]、肝癌[40]、膀胱癌[41]、直肠癌[42]、子宫内膜癌[43]、宫颈癌[44]、前列腺癌[45, 46]等疾病的诊断、鉴别、分级、转移以及治疗后的评估和肿瘤遗传标记的鉴定[47],其中在神经系统方面得到了高度认可,并根据脑肿瘤临床神经影像学的活组织检查进行了验证。

2 APT技术在PD中的应用进展

2.1 PD发生机制

       PD是以中脑黑质致密部多巴胺能神经元的选择性丢失和残余神经元内出现嗜酸性包涵体-路易小体为主要病理表现、以纹状体区多巴胺递质降低为主要生化表现的中枢神经系统退行性疾病[48]。目前,PD的诊断以静态震颤、肌强直、运动迟缓、步态不稳等运动症状和一些辅助检查为主,主观性较高。在PD患者首次出现症状之前,大量的黑质神经元已经丢失或受损。PD的病理生理机制尚不清楚,可能涉及线粒体功能障碍、溶酶体扰动、氧化应激、炎症和免疫反应、蛋白质聚集中断以及一些遗传和环境因素的级联机制[49]。其中,路易小体与PD的发生及发展密切相关,α-突触核蛋白(a-synuclein, α-Syn)是路易小体的主要组成成分,是天然未折叠形式的可溶性突触前蛋白,其错误折叠并异常聚集对多巴胺能神经元有毒性作用,可导致PD相关的神经变性,是PD的一个关键致病因素[50]。先前的研究表明,PD患者的血浆α-Syn水平高于普通人群,已被确定为PD的潜在生物标记物[51]

2.2 APT在PD中的研究进展

       迄今为止,LI等[52]已经发表了几项PD的APT/CEST成像研究。与正常对照者比较,PD患者的黑质和红核区域的APT信号强度降低(尽管红核的信号强度不明显),这可能是由于PD患者黑质神经元丢失,其能够与自由水交换的化学成分降低,从而使APT信号降低;同一时间,路易小体中的α-Syn升高也可使APT信号升高,但前者的作用比后者大,从而使PD患者黑质的总MTRasym降低。此外,患者苍白球、壳核和尾状核的APT信号强度呈现增加趋势或增加显著,这可能与胞质蛋白和肽增加有关,例如累积的错误折叠的α-Syn,以上结果提示APT可能具有诊断PD的潜能。紧接着该团队的进一步研究[53]证实了PD患者的黑质APT信号随着PD的发展而降低,到了晚期,PD患者黑质APT信号与早期PD患者相比显著降低,并且早期PD患者和正常对照组之间的APTw信号差异比CEST值更明显。同时作者比较了有单侧症状的PD患者患侧、健侧和正常对照组黑质的信号差异,发现患侧和健侧均显示出较低信号,尤其在患侧,这可能归因于PD进展过程中黑质的周期性变化。因此表明APT信号有可能作为早期诊断PD以及评估PD进展的成像生物标志物。另外,LI等[54]发现PD患者苍白球、壳核、尾状核APT的变化在早期最大,晚期稍有降低,并推测APTw信号强度早期是由于α-Syn异常聚集增加而增高,晚期的降低可能与神经元的损失及治疗效果作用导致的,同时,作者比较了APT与DTI在PD患者黑质及纹状体病变中的应用效果,结果显示,前者明显优于后者。

       MENNECKE等[55]在7 T MRI扫描仪上通过原始图像的运动校正、归一化、B0和B1校正以及Z谱的相关插值和去噪等后处理优化方法,获得了更高的再现性,观察到酰胺池的细微变化。此外,该研究首次检测到患有PD的受试者与年龄匹配的健康对照者黑质之间的脂肪族rNOE对比,同时提出了B1水平的不同可能会导致结果的解释不同,LI等[56]在B0=3 T和B1=2 μT进行的APT研究时发现黑质内MTRasym值下降是由于多巴胺能神经元损失介导的多种水交换化学物质的损失,而MENNECKE等在B0=7 T和B1=0.6 μT时的早期PD黑质内观察到只有脂肪族rNOE显著降低,这也可以解释多巴胺能神经元的丢失或退化。因此,由于B1水平的不同,不可能进行直接比较,但结合较低的B1和较高的B1 APT数据可能会使PD的特异性得到进一步提高。

       APT不仅可用于PD的早期诊断和评估,也可作为诊断非典型帕金森综合征的一种手段。LI等[56]发现,帕金森型多系统萎缩(multiple system atrophy Parkinsonism type, MSA-P)患者红核、黑质、丘脑和壳核的MTRasym高于正常对照组,可能归因于异常细胞质蛋白的积累、胶质细胞及小胶质细胞的增生。其中壳核的APT值与帕金森病评分量表-Ⅲ评分之间呈负相关,而红核的MTRasym与运动症状进展率呈正相关,研究结果支持APT成像可用于预测MSA-P的运动症状进展,并表明APT成像可能有助于区分MSA-P和PD,未来需要进一步的研究来评估APT成像在MSA-P和PD鉴别诊断中的可行性。

       综上所述,APT成像是利用内源性物质并成功应用于临床研究的分子影像技术。从分子水平来探讨PD患者各脑区蛋白质代谢情况可间接反映黑质多巴胺神经元损伤的严重程度,在PD的早期诊断、病情监测及评估预后等发面发挥着越来越重要的作用,为PD的研究提供了一个全新的思路。

3 挑战及前景

       APT成像技术的优点在于不需要注入任何外源性对比剂,还可以检测细胞中的游离蛋白质和多肽分子,从而间接地反映细胞内的代谢和病理改变,并且具有良好的重复性,显示出了临床应用的潜力[57]。在过去十几年中,通过使用APT成像获得了一些令人鼓舞的发现。然而,这些发现主要局限于动物模型或试点临床研究。为了将APT成像技术常规应用于临床,需要解决一些关键问题。第一,主磁场 B0及射频磁场B1的不均匀性效应,特别是在颞脑区域[21]。有研究表明无论疾病状况如何,幕上APTw可重复性好,而幕下的重复性较差[58]。此外,眶额回[57]、靠近上矢状窦的区域[59]的重复性低,原因是这些区域B0严重不均匀和磁敏感性影响MTR的对称性。第二,APT序列扫描时间较长,需要优化。第三,各种原因导致的伪影如运动伪影、脂质伪影及脑脊液导致的伪影造成假象从而导致误判。第四,体内具有相似饱和频率的代谢物质发生相互交叉饱和很容易影响APT成像的特异性。第五,由于研究所采用的设备、场强、饱和功率、饱和时间、采样频率、读出数据、分析方法等因素的差异,往往难以进行对比,而且大多数的研究都是小样本量的回顾性研究。第六,APT/CEST数据所代表的临床意义还需要标准化。

       APT技术从二维单层成像向三维多层成像技术发展,图像的信噪比有了明显的改善[60]。到目前为止,已经开发了大量的成像方案和技术来加速APT/CEST MRI。例如校正B0场和B1场不均匀性[61, 62]、纠正脂肪信号导致的伪影[24]以及减少运动伪影[63]。SUI等[64]通过starCEST方法实现了快速多层APT照射,与具有相同扫描时间的三维快速自旋回波CEST方法相比,starCEST获取的APT图像的质量、信噪比和运动稳健性大大提高。新兴的准稳态CEST重建可能有助于体内CEST图像分析的标准化,这可以在未来的定量CEST MRI研究中采用[65]。基于深度学习的方法也被应用于获得CEST对比,以加速和简化CEST的后处理[66]。ZAISS等[67]提出使用深度神经网络从3 T CEST信号预测9.4 T CEST信号,证明了从低场CEST数据中提取不可观察的CEST信号的可行性。还有一些研究将MR指纹识别与深度神经网络重建相结合以获得分子特性,包括浓度和交换率[68, 69]

       尽管目前APT针对PD的研究相对较少,但我们相信,APT作为新型无辐射又经济的代谢成像技术,具有很大优势和潜力,未来随着影像设备的不断发展、硬件和软件技术的不断提升,通过更大规模的临床试验,APT将会逐渐走向成熟,实现高信噪比、全脑覆盖、短采集时间。一体化的定量APT MRI也将为PD的基础研究提供更全面、更客观、更准确的影像信息,在PD的早期诊断及后续治疗中发挥不可或缺的作用。

[1]
陈芝君, 马建, 唐娜, 等. 中国帕金森病疾病负担变化趋势分析及预测[J]. 中国慢性病预防与控制, 2022, 30(9): 649-654. DOI: 10.16386/j.cjpccd.issn.1004-6194.2022.09.003.
CHEN Z J, MA J, TANG N, et al. Disease burden trend analysis and prediction of Parkinson's disease in China[J]. Chin J Prev Contr Chron Dis, 2022, 30(9): 649-654. DOI: 10.16386/j.cjpccd.issn.1004-6194.2022.09.003.
[2]
DORSEY E R, SHERER T, OKUN M S, et al. The Emerging Evidence of the Parkinson Pandemic[J]. J Parkinsons Dis, 2018, 8(s1): S3-S8. DOI: 10.3233/JPD-181474.
[3]
LI G, MA J, CUI S, et al. Parkinson's disease in China: a forty-year growing track of bedside work[J]. Transl Neurodegener, 2019, 8: 22. DOI: 10.1186/s40035-019-0162-z.
[4]
MA X, LI S, LI C, et al. Diffusion Tensor Imaging Along the Perivascular Space Index in Different Stages of Parkinson's Disease[J]. Front Aging Neurosci, 2021, 15(13): 773951. DOI: 10.3389/fnagi.2021.773951.
[5]
HALLER S, HAACKE E M, THURNHER M M, et al. Susceptibility-weighted Imaging: Technical Essentials and Clinical Neurologic Applications[J]. Radiology, 2021, 299(1): 3-26. DOI: 10.1148/radiol.2021203071.
[6]
LE H, ZENG W, ZHANG H, et al. Mean apparent propagator MRI is better than conventional diffusion tensor imaging for the evaluation of Parkinson's disease: a prospective pilot study[J]. Front Aging Neurosci, 2020, 12: 563595. DOI: 10.3389/fnagi.2020.563595.
[7]
CHENG L, WU X, GUO R, et al. Discriminative pattern of reduced cerebral blood flow in Parkinson's disease and Parkinsonism-plus syndrome: an ASL-MRI study[J]. BMC Med Imaging, 2020, 20(1): 78. DOI: 10.1186/s12880-020-00479-y.
[8]
THOMAS G E C, LEYLAND L A, SCHRAG A E, et al. Brain iron deposition is linked with cognitive severity in Parkinson's disease[J]. J Neurol Neurosurg Psychiatry, 2020, 91(4): 418-425. DOI: 10.1136/jnnp-2019-322042.
[9]
DONAHUE E K, BUI V, FOREMAN R P, et al. Magnetic resonance spectroscopy shows associations between neurometabolite levels and perivascular space volume in Parkinson's disease: a pilot and feasibility study[J]. Neuroreport, 2022, 33(7): 291-296. DOI: 10.1097/WNR.0000000000001781.
[10]
SUNG S, FARRELL M, VIJIARATNAM N, et al. Pain and dyskinesia in Parkinson's disease may share common pathophysiological mechanisms-An fMRI study[J]. J Neurol Sci, 2020, 15(416): 116905. DOI: 10.1016/j.jns.2020.116905.
[11]
黄小盼, 韩鸿宇, 王敏, 等. 神经突方向离散度与密度成像对帕金森病脑深部核团的临床研究[J]. 磁共振成像, 2021, 12(3): 6-9, 19. DOI: 10.12015/issn.1674-8034.2021.03.002.
HUANG X P, HAN H Y, WANG M, et al. Clinical research of NODDI technology in deep brain nucleus of Parkinson's disease[J]. Chin J Magn Reson Imaging, 2021, 12(3): 6-9, 19. DOI: 10.12015/issn.1674-8034.2021.03.002.
[12]
PATHAK N, VIMAL S K, TANDON I, et al. Neurodegenerative Disorders of Alzheimer, Parkinsonism, Amyotrophic Lateral Sclerosis and Multiple Sclerosis: An Early Diagnostic Approach for Precision Treatment[J]. Metab Brain Dis, 2022, 37(1): 67-104. DOI: 10.1007/s11011-021-00800-w.
[13]
VAN ZIJL P C, ZHOU J, MORI N, et al. Mechanism of magnetization transfer during on-resonance water saturation. A new approach to detect mobile proteins, peptides, and lipids[J]. Magn Reson Med, 2003, 49(3): 440-449. DOI: 10.1002/mrm.10398.
[14]
WARD K M, ALETRAS A H, BALABAN R S. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST)[J]. J Magn Reson, 2000, 143: 79-87. DOI: 10.1006/jmre.1999.1956.
[15]
KOGAN F, HARIHARAN H, REDDY R. Chemical exchange saturation transfer (CEST) imaging: description of technique and potential clinical applications[J]. Curr Radiol Rep, 2013, 1: 102-114. DOI: 10.1007/s40134-013-0010-3.
[16]
VAN ZIJL P C, YADAV N N. Chemical exchange saturation transfer (CEST): what is in a name and what isn't?[J]. Magn Reson Med, 2011, 65(4): 927-948. DOI: 10.1002/mrm.22761.
[17]
CEMBER A T J, NANGA R P R, REDDY R. Glutamate-weighted CEST (gluCEST) imaging for mapping neurometabolism: An update on the state of the art and emerging findings from in vivo applications[J]. NMR Biomed, 2022, 31: 4780. DOI: 10.1002/nbm.4780.
[18]
LIU Z, YANG Q, LUO H, et al. Demonstration of fast and equilibrium human muscle creatine CEST imaging at 3 T[J]. Magn Reson Med, 2022, 88(1): 322-331. DOI: 10.1002/mrm.29223.
[19]
ANEMONE A, CAPOZZA M, ARENA F, et al. In vitro and in vivo comparison of MRI chemical exchange saturation transfer (CEST) properties between native glucose and 3-O-Methyl-D-glucose in a murine tumor model[J/OL]. NMR Biomed, 2021, 34(12): e4602 [2023-02-02]. https://pubmed.ncbi.nlm.nih.gov/34423470/. DOI: 10.1002/nbm.4602.
[20]
GILAD A A, BAR-SHIR A, BRICCO A R, et al. Protein and peptide engineering for chemical exchange saturation transfer imaging in the age of synthetic biology[J]. NMR Biomed, 2022, 11: 4712. DOI: 10.1002/nbm.4712.
[21]
ZHOU J, HEO H Y, KNUTSSON L, et al. APT-weighted MRI: Techniques, current neuro applications, and challenging issues[J]. J Magn Reson Imaging, 2019, 50(2): 347-364. DOI: 10.1002/jmri.26645.
[22]
ZHOU J, PAYEN J F, WILSON D A, et al. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI[J]. Nat Med, 2003, 9(8): 1085-1090. DOI: 10.1038/nm907.
[23]
LU J, ZHOU J, CAI C, et al. Observation of true and pseudo NOE signals using CEST-MRI and CEST-MRS sequences with and without lipid suppression[J]. Magn Reson Med, 2015, 73: 1615-1622. DOI: 10.1002/mrm.25277.
[24]
GOERKE S, SOEHNGEN Y, DESHMANE A, et al. Relaxation-compensated APT and rNOE CEST-MRI of human brain tumors at 3 T[J]. Magn Reson Med, 2019, 82(2): 622-632. DOI: 10.1002/mrm.27751.
[25]
MUELLER S, STIRNBERG R, AKBEY S, et al. Whole brain snapshot CEST at 3T using 3D-EPI: Aiming for speed, volume, and homogeneity[J]. Magn Reson Med, 2020, 84(5): 2469-2483. DOI: 10.1002/mrm.28298.
[26]
HEO H Y, ZHANG Y, LEE D H, et al. Quantitative assessment of amide proton transfer (APT) and nuclear Overhauser enhancement (NOE) imaging with extrapolated semi‐solid magnetization transfer reference (EMR) signals: application to a rat glioma model at 4.7 Tesla[J]. Magn Reson Med, 2016, 75(1): 137-149. DOI: 10.1002/mrm.25581.
[27]
CHEN L, BARKER P B, WEISS R G, et al. Creatine and phosphocreatine mapping of mouse skeletal muscle by a polynomial and Lorentzian line-shape fitting CEST method[J]. Magn Reson Med, 2019, 81(1): 69-78. DOI: 10.1002/mrm.27514.
[28]
RAY K J, SIMARD M A, LARKIN J R, et al. Tumor pH and protein concentration contribute to the signal of amide proton transfer magnetic resonance imaging[J]. Cancer Res, 2019, 79(7): 1343-1352. DOI: 10.1158/0008-5472.CAN-18-2168.
[29]
ZHOU J, ZAISS M, KNUTSSON L, et al. Review and consensus recommendations on clinical APT-weighted imaging approaches at 3T: Application to brain tumors[J]. Magn Reson Med, 2022, 88(2): 546-574. DOI: 10.1002/mrm.29241.
[30]
KOIKE H, MORIKAWA M, ISHIMARU H, et al. Amide proton transfer MRI differentiates between progressive multifocal leukoencephalopathy and malignant brain tumors: a pilot study[J]. BMC Med Imaging, 2022, 22(1): 227. DOI: 10.1186/s12880-022-00959-3.
[31]
YU L, LI C, LUO X, et al. Differentiation of malignant and benign head and neck tumors with amide proton transfer-weighted mr imaging[J]. Mol Imaging Biol, 2019, 21(2): 348-355. DOI: 10.1007/s11307-018-1248-1.
[32]
NAKAJO M, BOHARA M, KAMIMURA K, et al. Correlation between amide proton transfer-related signal intensity and diffusion and perfusion magnetic resonance imaging parameters in high-grade glioma[J]. Sci Rep, 2021, 11: 11223. DOI: 10.1038/s41598-021-90841-z.
[33]
FOO L S, HARSTON G, MEHNDIRATTA A, et al. Clinical translation of amide proton transfer (APT) MRI for ischemic stroke: a systematic review (2003-2020)[J]. Quant Imaging Med Surg, 2021, 11(8): 3797-3811. DOI: 10.21037/qims-20-1339.
[34]
CHEN S, LIU X, LIN J, et al. Application of amide proton transfer imaging for the diagnosis of neonatal hypoxic-ischemic encephalopathy[J]. Front Pediatr, 2022, 11(10): 996949. DOI: 10.3389/fped.2022.996949.
[35]
ZHANG H, ZHOU J, PENG Y. Amide Proton Transfer-Weighted MR Imaging of Pediatric Central Nervous System Diseases[J]. Magn Reson Imaging Clin N Am, 2021, 29(4): 631-641. DOI: 10.1016/j.mric.2021.06.012.
[36]
王迪, 王笑男, 高平, 等. 酰胺质子转移磁共振成像在阿尔茨海默病和轻度认知障碍中的应用[J]. 中国医学影像学杂志, 2022, 30(5): 430-434. DOI: 10.3969/j.issn.1005-5185.2022.05.003.
WANG D, WANG X N, GAO P, et al. Application of Amide Proton Transfer Magnetic Resonance Imaging in Alzheimer's Disease and Mild Cognitive Impairment[J]. Chinese Journal of Medical Imaging, 2022, 30(5): 430-434. DOI: 10.3969/j.issn.1005-5185.2022.05.003.
[37]
SARTORETTI E, SARTORETTI T, WYSS M, et al. Amide proton transfer weighted imaging shows differences in multiple sclerosis lesions and white matter hyperintensities of presumed vascular origin[J]. Front Neurol, 2019, 10: 1307. DOI: 10.3389/fneur.2019.01307.
[38]
WANG W, ZHANG H, LEE D H, et al. Using functional and molecular MRI techniques to detect neuroinflammation and neuroprotection after traumatic brain injury[J]. Brain Behav Immun, 2017, 64: 344-353. DOI: 10.1016/j.bbi.2017.04.019.
[39]
ZIMMERMANN F, KORZOWSKI A, BREITLING J, et al. A novel normalization for amide proton transfer CEST MRI to correct for fat signal-induced artifacts: application to human breast cancer imaging[J]. Magn Reson Med, 2020, 83(3): 920-934. DOI: 10.1002/mrm.27983.
[40]
LIN Y, LUO X, YU L, et al. Amide proton transfer-weighted MRI for predicting histological grade of hepatocellular carcinoma: comparison with diffusion-weighted imaging[J]. Quant Imaging Med Surg, 2019, 9(10): 1641-1651. DOI: 10.21037/qims.2019.08.07.
[41]
WANG H J, CAI Q, HUANG Y P, et al. Amide Proton Transfer-weighted MRI in Predicting Histologic Grade of Bladder Cancer[J]. Radiology, 2022, 305(1): 127-134. DOI: 10.1148/radiol.211804.
[42]
WEI Q, YUAN W, JIA Z, et al. Preoperative MR radiomics based on high-resolution T2-weighted images and amide proton transfer-weighted imaging for predicting lymph node metastasis in rectal adenocarcinoma[J]. Abdom Radiol (NY), 2022. DOI: 10.1007/s00261-022-03731-x.
[43]
TIAN S, CHEN A, LI Y, et al. The combined application of amide proton transfer imaging and diffusion kurtosis imaging for differentiating stage Ia endometrial carcinoma and endometrial polyps[J/OL]. Magn Reson Imaging, 2023, 2(22): S0730-725X00241-7 [2023-02-02]. https://pubmed.ncbi.nlm.nih.gov/36603780/. DOI: 10.1016/j.mri.2022.12.026.
[44]
HE Y L, LI Y, LIN C Y, et al. Three-dimensional turbo-spin-echo amide proton transfer-weighted MRI for cervical cancer: a preliminary study[J]. J Magn Reson Imaging, 2019, 50(4): 1318-1325. DOI: 10.1002/jmri.26710.
[45]
YIN H, WANG D, YAN R, et al. Comparison of Diffusion Kurtosis Imaging and Amide Proton Transfer Imaging in the Diagnosis and Risk Assessment of Prostate Cancer[J]. Front Oncol, 2021, 11: 640906. DOI: 10.3389/fonc.2021.640906.
[46]
张鹏运, 汤芸行, 姜昊洋, 等. 三维酰胺质子转移成像鉴别前列腺癌伴骨转移与不伴骨转移的可行性研究[J]. 磁共振成像, 2022, 13(12): 100-103, 110. DOI: 10.12015/issn.1674-8034.2022.12.017.
ZHANG P Y, TANG Y X, JIANG H Y, et al. Feasibility study of three-dimensional amide proton transfer imaging in differentiating prostate cancer with and without bone metastasis[J]. Chin J Magn Reson Imaging, 2022, 13(12): 100-103, 110. DOI: 10.12015/issn.1674-8034.2022.12.017.
[47]
MANCINI L, CASAGRANDA S, GAUTIER G, et al. CEST MRI provides amide/amine surrogate biomarkers for treatment-naïve glioma sub-typing[J]. Eur J Nucl Med Mol Imaging, 2022, 49(7): 2377-2391. DOI: 10.1007/s00259-022-05676-1.
[48]
TOLOSA E, GARRIDO A, SCHOLZ S W, et al. Challenges in the diagnosis of Parkinson's disease[J]. Lancet Neurol, 2021, 20(5): 385-397. DOI: 10.1016/S1474-4422(21)00030-2.
[49]
DI MAIO R, HOFFMAN E K, ROCHA E M, et al. LRRK2 activation in idiopathic Parkinson's disease[J]. Sci Transl Med, 2018, 25(10): 451. DOI: 10.1126/scitranslmed.aar5429.
[50]
BLOEM B R, OKUN M S, KLEIN C. Parkinson's disease[J]. Lancet, 2021, 397(10291): 2284-2303. DOI: 10.1016/S0140-6736(21)00218-X.
[51]
KWON E H, TENNAGELS S, GOLD R, et al. Update on CSF Biomarkers in Parkinson's Disease[J]. Biomolecules, 2022, 12(2): 329. DOI: 10.3390/biom12020329.
[52]
LI C, PENG S, WANG R, et al. Chemical exchange saturation transfer MR imaging of Parkinson's disease at 3 Tesla[J]. Eur Radiol, 2014, 24(10): 2631-2639. DOI: 10.1007/s00330-014-3241-7.
[53]
LI C, CHEN M, ZHAO X, et al. Chemical Exchange Saturation Transfer MRI Signal Loss of the Substantia Nigra as an Imaging Biomarker to Evaluate the Diagnosis and Severity of Parkinson's Disease[J]. Front Neurosci, 2017, 11: 489. DOI: 10.3389/fnins.2017.00489.
[54]
LI C, WANG R, CHEN H, et al. Chemical exchange saturation transfer MR imaging is superior to diffusion-tensor imaging in the diagnosis and severity evaluation of Parkinson's disease: a study on substantia nigra and striatum[J]. Front Aging Neurosci, 2015, 7: 198. DOI: 10.3389/fnagi.2015.00198.
[55]
MENNECKE A, KHAKZAR K M, GERMAN A, et al. 7 tricks for 7 T CEST: Improving the reproducibility of multipool evaluation provides insights into the effects of age and the early stages of Parkinson's disease[J]. NMR Biomed, 2022, 22: 4717. DOI: 10.1002/nbm.4717.
[56]
LI S, CHAN P, LI C, et al. Changes of Amide Proton Transfer Imaging in Multiple System Atrophy Parkinsonism Type[J]. Front Aging Neurosci, 2020, 30(12): 572421. DOI: 10.3389/fnagi.2020.572421.
[57]
WAMELINK I J H G, KUIJER J P A, PADRELA B E, et al. Reproducibility of 3 T APT-CEST in Healthy Volunteers and Patients With Brain Glioma[J]. J Magn Reson Imaging, 2023, 57(1): 206-215. DOI: 10.1002/jmri.28239.
[58]
LEE J B, PARK J E, JUNG S C, et al. Repeatability of amide proton transfr-weighted signals in the brain according to clinical condition and anatomical location[J]. Eur Radiol, 2020, 30(1): 346-356. DOI: 10.1007/s00330-019-06285-7.
[59]
ZHOU J, ZHU H, LIM M, et al. Three-dimensional amide proton transfer MR imaging of gliomas: Initial experience and comparison with gadolinium enhancement[J]. J Magn Reson Imaging, 2013, 38(5): 1119-1128. DOI: 10.1002/jmri.24067.
[60]
WADA T, TOKUNAGA C, TOGAO O, et al. Three-dimensional chemical exchange saturation transfer imaging using compressed SENSE for full z-spectrum acquisition[J]. Magn Reson Imaging, 2022, 92: 58-66. DOI: 10.1016/j.mri.2022.05.014.
[61]
LIEBERT A, TKOTZ K, HERRLER J, et al. Whole-brain quantitative CEST MRI at 7T using parallel transmission methods and correction[J]. Magn Reson Med, 2021, 86(1): 346-362. DOI: 10.1002/mrm.28745.
[62]
LIEBERT A, ZAISS M, GUMBRECHT R, et al. Multiple interleaved mode saturation (MIMOSA) for B1+ inhomogeneity mitigation in chemical exchange saturation transfer[J]. Magn Reson Med, 2019, 82(2): 693-705. DOI: 10.1002/mrm.27762.
[63]
ZAISS M, HERZ K, DESHMANE A, et al. Possible artifacts in dynamic CEST MRI due to motion and field alterations[J]. J Magn Reson, 2019, 298: 16-22. DOI: 10.1016/j.jmr.2018.11.002.
[64]
SUI R, CHEN L, LI Y, et al. Whole-brain amide CEST imaging at 3T with a steady-state radial MRI acquisition[J]. Magn Reson Med, 2021, 86(2): 893-906. DOI: 10.1002/mrm.28770.
[65]
SUN P Z. Quasi–steady-state amide proton transfer (QUASS APT) MRI enhances pH-weighted imaging of acute stroke[J]. Magn Reson Med, 2022, 88: 2633-2644. DOI: 10.1002/mrm.29408.
[66]
PERLMAN O, ITO H, HERZ K, et al. Quantitative imaging of apoptosis following oncolytic virotherapy by magnetic resonance fingerprinting aided by deep learning[J]. Nat Biomed Eng, 2022, 6(5): 648-657. DOI: 10.1038/s41551-021-00809-7.
[67]
ZAISS M, EHSES P, SCHEFFLER K. Snapshot-CEST: Optimizing spiral-centric-reordered gradient echo acquisition for fast and robust 3D CEST MRI at 9.4 T[J]. NMR Biomed, 2018, 31(4): 3879. DOI: 10.1002/nbm.3879.
[68]
KIM B, SCHÄR M, PARK H, et al. A deep learning approach for magnetization transfer contrast MR fingerprinting and chemical exchange saturation transfer imaging[J]. Neuroimage, 2020, 1(221): 117165. DOI: 10.1016/j.neuroimage.2020.117165.
[69]
KANG B, KIM B, SCHÄR M, et al. Unsupervised learning for magnetization transfer contrast MR fingerprinting: Application to CEST and nuclear Overhauser enhancement imaging[J]. Magn Reson Med, 2021, 85: 2040-2054. DOI: 10.1002/mrm.28573.

上一篇 基于MEGA-PRESS的γ-氨基丁酸定量在神经系统疾病中的临床研究进展
下一篇 基于弥散张量成像及图论分析法的孤独症谱系障碍患者脑结构网络研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2