分享:
分享到微信朋友圈
X
综述
基于MRI影像组学方法预测乳腺癌新辅助治疗疗效的现状及进展
尚怡研 谭红娜

Cite this article as: SHANG Y Y, TAN H N. Current status and progress in predicting the efficacy of neoadjuvant therapy for breast cancer based on MRI radiomics methods[J]. Chin J Magn Reson Imaging, 2023, 14(7): 181-185, 191.本文引用格式:尚怡研, 谭红娜. 基于MRI影像组学方法预测乳腺癌新辅助治疗疗效的现状及进展[J]. 磁共振成像, 2023, 14(7): 181-185, 191. DOI:10.12015/issn.1674-8034.2023.07.033.


[摘要] 乳腺癌是目前女性最常见的恶性肿瘤之一,新辅助治疗(neoadjuvant therapy, NAT)已广泛用于局部晚期乳腺癌的术前治疗,治疗目的在于降低肿瘤分期、提高保乳率。诸多研究表明通过磁共振成像(magnetic resonance imaging, MRI)技术可预测乳腺癌NAT的疗效。近年来,影像组学受到了国内外学者的广泛关注,诸多学者就乳腺MRI影像组学特征在乳腺癌NAT疗效评价方面进行了大量的研究和探索。本文就MRI影像组学方法预测乳腺癌NAT疗效的现状及进展做一综述,以期提高临床医生和影像科医生对MRI影像组学方法在乳腺癌NAT疗效评价中应用的认识。
[Abstract] Breast cancer is one of the most common malignant tumors in women. Neoadjuvant therapy (NAT) has been widely used in the preoperative treatment of locally advanced breast cancer. A number of studies have shown that Magnetic resonance imaging (MRI) techniques can predict the efficacy of neoadjuvant therapy for breast cancer. In recent years, radiomics has been paid more and more attention by scholars at home and abroad. Many researchers have studied and explored how to predict the efficacy of NAT in breast cancer based on MRI radiomics features. This article reviews the current status and progress in predicting the efficacy of NAT in breast cancer based on MRI radiomics methods, to help clinicians and radiologists to understand the application and progress of MRI radiomics methods in the efficacy evaluation of NAT in breast cancer.
[关键词] 乳腺癌;新辅助治疗;疗效评估;磁共振成像;影像组学;动态对比增强磁共振成像;扩散加权成像
[Keywords] breast cancer;neoadjuvant therapy;efficacy evaluation;magnetic resonance imaging;radiomics;dynamic contrast-enhanced magnetic resonance imaging;diffusion weighted imaging

尚怡研    谭红娜 *  

河南大学人民医院 河南省人民医院医学影像科,郑州 450003

通信作者:谭红娜,E-mail:natan2000@126.com

作者贡献声明:谭红娜设计本研究的方案,对稿件的重要内容进行了修改,尚怡研起草和撰写稿件,分析和解释本研究的内容;谭红娜获得河南省自然科学基金面上项目和河南省医学科技攻关计划项目的资金资助。全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 河南省自然科学基金 202300410081 河南省医学科技攻关计划项目 LHGJ20220055
收稿日期:2023-02-10
接受日期:2023-06-28
中图分类号:R445.2  R737.9 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.07.033
本文引用格式:尚怡研, 谭红娜. 基于MRI影像组学方法预测乳腺癌新辅助治疗疗效的现状及进展[J]. 磁共振成像, 2023, 14(7): 181-185, 191. DOI:10.12015/issn.1674-8034.2023.07.033.

0 前言

       乳腺癌是目前女性最常见的恶性肿瘤之一,且发病率逐年上升[1]。新辅助治疗(neoadjuvant therapy, NAT)是指未发现远处转移的乳腺癌患者在术前进行的一系列全身治疗,包括新辅助化疗、靶向治疗及内分泌治疗等。NAT旨在降低肿瘤分期,缩小肿瘤体积,使不能手术的患者拥有手术的机会,同时提高患者的保乳率。目前NAT已广泛用于局部晚期乳腺癌的术前治疗[2]。准确评估乳腺癌NAT的疗效、确定残留肿瘤大小及边界,对乳腺癌治疗方案的调整、手术方式的选择及预后判断意义重大。目前,组织病理学仍是评价NAT是否获得病理完全缓解(pathologic complete response, pCR)的金标准。然而,组织病理学检查有创且不能动态监测疗效,具有滞后性。传统影像学检查,如乳腺X线摄影、超声、磁共振成像(magnetic resonance imaging, MRI)、正电子发射断层显像(positron emission tomography, PET)/CT及PET/MRI等,可无创、多方位、多序列成像,具有较好的可重复性和实时性,通过治疗前后残余病灶的形态学变化来判断疗效,但目前尚无统一的评价标准[3]。影像组学是基于影像图像,高通量地提取大量图像特征并进行分析的方法。MRI检查因具有较高的软组织分辨率在乳腺癌疗效评价方面应用广泛,本文就乳腺MRI影像组学在乳腺癌NAT中疗效评价的现状及进展做一综述,以期提高临床医生和影像科医生对MRI影像组学在乳腺癌NAT疗效评价中应用的认识,并为精准预测乳腺癌NAT疗效模型的构建提供帮助。

1 传统MRI评价乳腺癌NAT疗效的现状

       MRI因具有较高的软组织分辨率及多参数成像而成为乳腺癌NAT疗效评估最常用的检查方法之一[4]。目前,可用于乳腺癌NAT疗效评价的MRI检查技术包括动态对比增强MRI像(dynamic contrastenhanced MRI, DCE-MRI)、扩散加权成像(diffusion weighted imaging, DWI)及MR波谱成像(magnetic resonance spectroscopy, MRS)等。

1.1 传统MRI在评价乳腺癌NAT疗效中的应用

       DCE-MRI主要通过多种半定量(基于肿瘤大小或强化程度)或定量参数(基于药代动力学模型)来分析肿瘤组织内血供情况及肿瘤内部生物学特征变化,从而实现乳腺癌患者NAT的疗效评估。KIM等[5]通过药代动力学模型计算出DCE-MRI定量参数,如容量转移常数(Ktrans)、速率常数(Kep)、血管外细胞外间隙容积比(Ve)等预测乳腺癌患者NAT疗效,模型的受试者工作特征曲线下面积(area under the curve, AUC)为0.760~0.810。JAHANI等[6]的研究结果也表明,从DCE-MRI扫描中提取的精确测量的肿瘤异质性的体素变化可提高局部晚期乳腺癌患者NAT疗效的早期预测效能。

       DWI是目前唯一能够检测活体组织内水分子扩散运动的无创性检查方法。多个因素决定了扩散序列对水分子扩散运动的敏感性,其中最主要的因素是扩散加权的程度,由b值表示,且b值越高对水分子扩散运动越敏感[7]。表观扩散系数(apparent diffusion coefficient, ADC)是从DWI导出的扩散系数的定量测量值,由于肿瘤细胞结合较密,其内水分子扩散明显受限,ADC值通常较低[8]。诸多学者的研究[9, 10]表明,DWI中测量的ΔADC值是一种独立的影像学标志物,可预测乳腺癌NAT的疗效,LI等[10]的研究发现DWI的预测性能优于DCE-MRI。但是,目前使用DWI预测乳腺癌NAT疗效的相关研究还比较少,DWI联合DCE-MRI可同时获得肿瘤灌注和血管的功能信息及水分子扩散运动情况,也许会提高对乳腺癌NAT疗效的预测能力。LI等[11]的研究验证了这一观点,该研究在DCE-MRI的基础上添加ADC预测指标,使NAT中期(AUC值从0.760增加到0.780)和NAT后期(AUC值从0.760增加到0.810)模型的AUC值均增加。

       MRS可无创性监测感兴趣组织内的化学物质,如体内胆碱复合物(choline complex, tCho)代谢水平的变化。tCho是细胞膜磷脂代谢的成分之一,主要参与细胞膜的合成与降解,NAT后肿瘤细胞增殖减少,代谢下降,tCho水平也随之下降[12]。诸多学者的研究表明,MRS可以预测乳腺癌NAT后的疗效[13, 14],CHO等[14]还发现MRS早期预测NAT疗效的性能与氟代脱氧葡萄糖(Fludeoxyglucose, FDG)-PET相当。

1.2 传统MRI在评价乳腺癌NAT疗效中的优势与不足

       DCE-MRI可通过NAT前后肿瘤大小的变化评估其疗效,DWI可通过治疗前后癌灶内水分子扩散程度变化来较好地预测乳腺癌NAT疗效,MRS可通过治疗前后tCho水平的变化预测乳腺癌NAT疗效。但这些传统MRI技术在评估乳腺癌NAT疗效时有一定的局限性。DCE-MRI可能会因为肿瘤周围坏死、多发散在病灶或肿瘤炎性反应等高估肿瘤大小,也可能会因为某些化疗药物的抗血管作用、非常小的残留病灶的局部体积效应等低估肿瘤大小[15]。DWI空间分辨率有限,可能会忽略NAT后的小肿瘤病灶;且其为了病变的显著性,首选较高的b值,但研究中使用的最大b值没有达成共识[15]。MRS则存在空间分辨力低,小病灶内的tCho很难被检测到,以及代谢物质绝对定量困难等限制。同时,传统影像检查虽可清楚显示病灶的大小、形态、强化方式等特征,但不同放射科医生对影像图像的判读具有很大的主观性。

2 MRI影像组学在预测乳腺癌NAT疗效应用中的现状及进展

       影像组学,又称放射组学,由LAMBIN等于2012年首次提出,是指从X线、CT、MRI或PET等图像中高通量地提取和分析大量的定量成像特征,并进一步分析其与肿瘤异质性的潜在联系[16, 17, 18]。影像组学分析的基本流程包括数据采集和预处理、感兴趣区(region of interest, ROI)分割、特征提取、筛选及建模。影像组学的本质是从影像图像中提取大量的肉眼无法分辨的病变的定量特征,包括人工定义的特征(语义和非语义)和深度学习(deep learning, DL)的特征[19]。影像组学利用复杂的图像分析工具与统计分析相结合来提取隐藏在医学图像中的大量信息,进而全面揭示病变内部的联系,全面反映肿瘤的异质性,可用于病变的诊断、分型及预后预测等[20]。影像组学在临床中的应用:(1)用于疾病的辅助诊断及鉴别诊断,如鉴别前列腺癌和前列腺炎、良性前列腺增生等非肿瘤性疾病[21]、鉴别良性和恶性乳腺病变[22];鉴别肺结节的良恶性[23]。(2)用于肿瘤的临床分级分期,如REN等[24]的研究发现基于MRI的影像组学特征能在术前预测头颈癌的分期。(3)用于肿瘤的疗效评估和预后预测,诸多学者的研究表明,基于影像组学特征可以对乳腺癌、直肠癌、食管癌、胃癌、骨肉瘤和鼻咽癌等疾病进行疗效评估和预后预测[25, 26, 27, 28, 29, 30, 31]。(4)预测淋巴结转移,诸多学者的研究表明,基于影像组学特征可以预测乳腺癌、肺癌等疾病的淋巴结转移[32, 33, 34, 35, 36, 37]

2.1 基于单/多参数MRI影像组学

       DCE-MRI除了提供肿瘤的形态学特征外,还可以提供肿瘤灌注和血流动力学特征,是目前乳腺疾病最敏感的检查手段之一。随着大数据及影像组学的发展,DCE-MRI也越来越多地被学者作为MRI的主要序列进行影像组学方面的研究[38]。诸多学者的研究表明,基于治疗前DCE-MRI影像组学特征构建的模型能够预测乳腺癌NAT的疗效[27,39, 40]。CAO等[27]为了评价DCE-MRI上肿块表现乳腺癌的pCR率,对112名行NAT的乳腺癌患者的MRI影像组学特征进行了研究,结果显示基于MRI影像组学特征构建的预测模型的训练集和验证集的AUC值分别为0.810和0.720,训练集的敏感度、特异度和准确率分别为70.00%、91.67%和83.93%。ZENG等[40]对117例乳腺癌患者NAT前后的DCE-MRI组学特征进行了分析,该研究表明基于DCE-MRI影像组学特征预测乳腺癌NAT后的pCR有较高的AUC值,为0.868~0.825。虽然诸多研究表明基于DCE-MRI影像组学特征可较好地预测乳腺癌NAT的疗效,但大多数是样本量较少的回顾性研究,且对于增强时间点和扫描序列的选择没有统一的标准。未来可开展大样本量的前瞻性研究,并制定增强时间点和扫描序列的统一标准来解决这一问题。

       多参数MRI(multiparametric MRI, mpMRI)是指多种MRI技术的组合应用。mpMRI影像组学模型与单参数MRI影像组学模型相比,不仅提高了乳腺癌诊断的准确性,避免了不必要的乳腺活检,且提高了对NAT疗效的评估和预测[38]。LIU等[41]的研究表明,与基于T2WI、DWI、DCE-MRI影像组学特征建立的模型相比,基于多参数MRI影像组学特征构建的模型预测乳腺癌NAT疗效可获得较高的AUC值,为0.790。BIAN等[42]基于T2WI、DWI、DCE-MRI组学特征建立的模型可较好地预测乳腺癌NAT后的pCR,训练集和验证集中的AUC值、准确率、敏感度、特异度分别为0.910和0.930、82.2%和81.8%、93.3%和100.0%、77.9%和75.0%。以上研究表明结合T2WI、DWI和DCE-MRI的多参数MRI影像组学特征建立的模型在预测乳腺癌患者NAT疗效方面有较好的性能,但目前多数研究的样本量较小,没有基于多中心数据集进行验证。围绕乳腺癌NAT疗效评估开展扩大样本量、前瞻性的多中心研究将是未来研究的重点。

2.2 基于瘤内、瘤周的MRI影像组学

       瘤周微环境在癌症发展和化疗耐药中也发挥了重要作用,已有学者基于瘤内和瘤周的影像组学特征建立联合模型预测乳腺癌NAT的疗效[43, 44]。LI等[43]就448例非转移性浸润性导管癌患者NAT前的多参数MRI瘤内及瘤周的影像组学特征进行了分析,结果表明基于瘤内特征或瘤周特征构建的模型均有较好的预测效能,瘤内模型和瘤周模型的训练集、验证集的AUC值分别为0.960、0.890和0.970、0.780。瘤内联合瘤周模型的预测性能进一步提高,其AUC值在训练集和验证集中分别为0.980和0.920。虽然该学者的研究是回顾性研究,存在一定的选择偏倚,手动进行瘤内、瘤周ROI的分割,非常耗时,但是该研究是多中心研究且样本量相对较大,在训练集和验证集均显示出良好的预测效能。BRAMAN等[44]的研究表明基于瘤内和瘤周DCE-MRI影像组学特征构建的模型可预测乳腺癌NAT的pCR。他们还发现对于不同亚型的乳腺癌,预测pCR的影像组学特征也不同,比如TN/HER2+乳腺癌预测pCR的最佳影像组学特征是瘤周区域内的斑点增强。BRAMAN等[45]基于瘤内、瘤周影像组学特征预测HER2+乳腺癌NAT后的pCR,研究发现基于瘤内联合瘤周特征构建的模型比单独的瘤内模型、瘤周模型能更好地预测pCR。目前基于瘤内联合瘤周特征预测乳腺癌NAT后pCR的研究较少,未来可多开展该方面的研究,还可将瘤内联合瘤周特征与临床指标结合起来共同预测NAT后的pCR。

2.3 基于PET/MRI影像组学

       PET/MRI是一种新兴的成像技术,可以同时获取多个MRI参数和PET数据[46]。近年来,一些学者使用PET/MRI影像组学预测乳腺癌NAT的疗效。UMUTLU等[47]的研究表明基于18F-FDG PET/MRI影像组学特征建立模型可更全面、高质量地预测乳腺癌患者NAT的pCR,尤其是基于HR+/HER-2(-)患者的PET/MRI特征构建的模型获得了最佳的AUC值,为0.940,敏感度、特异度和准确率均为85.2%。CHOI等[48]的研究表明,基于PET/MRI影像组学特征可预测晚期乳腺癌患者NAT的pCR,AUC值为0.805,敏感度和特异度分别为83.0%和68.0%。基于PET/MRI影像组学特征可综合分析肿瘤的形态、功能和代谢特征,可更全面地进行NAT的疗效预测,但目前关于PET/MRI影像组学应用于NAT疗效预测的研究非常有限且多数研究的样本量较小。未来可多开展PET/MRI影像组学预测乳腺癌NAT疗效的研究,甚至还可将PET/MRI影像组学与临床指标结合起来共同预测NAT后的pCR。

2.4 基于机器学习/DL的MRI影像组学

       放射科医生主要通过视觉对影像图像进行评估,从而诊断疾病和评估疗效,但这种评估通常是基于个人的经验,存在较大的主观性。近年来,许多学者将影像组学和人工智能结合起来用于疾病的诊断、预后等方面。人工智能算法,包括机器学习(machine learning, ML)和DL等,尤其是DL擅长自动识别成像数据中的复杂模式,并对影像图像的特征进行定量评估,在图像识别方面较人工阅片更客观[49]。因此,将人工智能与影像组学结合起来,可以进行更准确的图像特征评估。

       BITENCOURT等[50]的回顾性研究纳入311例接受NAT的HER-2过表达乳腺癌患者,基于MRI影像组学特征和临床参数构建ML模型预测NAT的pCR。研究结果表明,预测的敏感度、特异度和准确率分别为86.5%、80.0%和83.9%,优于仅使用临床参数建立的预测模型。HUSSAIN等[51]基于多个治疗时间点的MRI纹理特征和分子亚型建立ML预测模型。该研究比较了5个ML分类器的预测性能,集成分类器产生了最高的AUC和准确度,其次是决策树分类器。研究结果显示分子亚型、单独的治疗前、早、中期MRI纹理特征可适度预测pCR,AUC值分别为0.820、0.880、0.720、0.780;分子亚型结合MRI纹理特征显著改善了预测性能,AUC值为0.980。为了评估ML结合多参数MRI影像组学早期预测乳腺癌患者NAT后的疗效,TAHMASSEBI等[52]基于乳腺癌患者的DCE、DWI和T2WI影像组学特征结合ML构建的模型可早期预测NAT的疗效,提供有价值的预测信息来指导治疗决策。QU等[53]基于302例乳腺癌患者的DCE-MRI影像组学特征构建3个DL模型以预测NAT的疗效,分别是NAT前模型、NAT后模型、NAT前联合NAT后模型。研究发现,联合模型的AUC值最高,为0.970;NAT前模型、NAT后模型的AUC值分别为0.553、0.968。ZHOU等[54]基于DCE-MRI和DWI组学特征构建DL模型以预测三阴性乳腺癌患者NAT后的疗效。结果表明,DL模型在训练集和验证集中的AUC值分别为0.970和0.820,基于多参数MRI的DL模型可以在NAT早期预测三阴性乳腺癌患者NAT后的pCR。

       虽然基于ML/DL的MRI影像组学可提高NAT后pCR预测的准确性,但目前大多数研究是回顾性研究且样本量相对较小,以后可在样本量更大的前瞻性研究中进一步验证。

3 小结与展望

       常规MRI技术主要依据病变形态学及大小、MRI半定量或定量参数和ADC值等指标评估和预测乳腺癌NAT的疗效。与常规MRI技术相比,影像组学的优势在于可高通量定量提取和分析大量成像特征,并进一步分析其与肿瘤异质性的潜在联系。目前影像组学已用于疾病的诊断、鉴别诊断、预测肿瘤的临床分级、分期、评估疗效及预后预测。但影像组学作为一门新兴的学科,仍存在不足之处。(1)样本量少,且多为单中心回顾性研究。可扩大样本量,开展前瞻性的多中心研究来解决这一问题。(2)数据标准化问题。2016年提出的科学数据管理FAIR准则[55]对数据的收集、处理、管理及使用进行标准化,为影像组学的研究与发展提供了标准化数据。(3)可重复性差。影像组学特征的定义和计算缺乏标准化,其命名不明确,以及影像组学研究的可重复性有限,都阻碍了影像组学在临床实践中的应用。有研究提出图像生物标记物标准化[56]可解决其中的一些问题。

       总之,MRI影像组学可作为乳腺癌NAT疗效评价的一种新方法,但目前还存在一定的局限性,今后围绕乳腺癌NAT疗效评估开展扩大样本量、前瞻性的多中心研究、多参数联合及DL算法的研发将是未来研究的重点。本文就乳腺MRI影像组学方法对乳腺癌NAT疗效评价的现状及进展所做的综述,期望提高临床医生和影像科医生对MRI影像组学方法在乳腺癌NAT疗效评价中应用的认识,并为精准预测乳腺癌NAT疗效模型的开发提供帮助。

[1]
SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2022[J]. CA A Cancer J Clinicians, 2022, 72(1): 7-33. DOI: 10.3322/caac.21708.
[2]
中国抗癌协会乳腺癌专业委员会. 中国抗癌协会乳腺癌诊治指南与规范(2021年版)[J]. 中国癌症杂志, 2021, 31(10): 609-680. DOI: 10.19401/j.cnki.1007-3639.2021.10.013
Breast Cancer Committee of China Anti-cancer Association. Guidelines and norms for diagnosis and treatment of breast cancer of China Anti-Cancer Association (2021 edition)[J]. China Oncol, 2021, 31(10): 609-680. DOI: 10.19401/j.cnki.1007-3639.2021.10.013
[3]
中国乳腺癌新辅助治疗专家组. 中国乳腺癌新辅助治疗专家共识(2019年版)[J]. 中国癌症杂志, 2019, 29(5): 390-400. DOI: 10.19401/j.cnki.1007-3639.2019.05.009
Chinese Expert Group on Neoadjuvant Therapy for Breast Cancer. Expert consensus on neoadjuvant therapy for breast cancer in China (2019 edition)[J]. China Oncol, 2019, 29(5): 390-400. DOI: 10.19401/j.cnki.1007-3639.2019.05.009
[4]
REIG B, HEACOCK L, LEWIN A, et al. Role of MRI to assess response to neoadjuvant therapy for breast cancer[J/OL]. J Magn Reson Imaging, 2020, 52(6) [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/32227407/. DOI: 10.1002/jmri.27145.
[5]
KIM Y, KIM S H, SONG B J, et al. Early prediction of response to neoadjuvant chemotherapy using dynamic contrast-enhanced MRI and ultrasound in breast cancer[J]. Korean J Radiol, 2018, 19(4): 682-691. DOI: 10.3348/kjr.2018.19.4.682.
[6]
JAHANI N, COHEN E, HSIEH M K, et al. Prediction of treatment response to neoadjuvant chemotherapy for breast cancer via early changes in tumor heterogeneity captured by DCE-MRI registration[J/OL]. Sci Rep, 2019, 9(1): 12114 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/31431633/. DOI: 10.1038/s41598-019-48465-x.
[7]
PARTRIDGE S C, NISSAN N, RAHBAR H, et al. Diffusion-weighted breast MRI: clinical applications and emerging techniques[J]. J Magn Reson Imaging, 2017, 45(2): 337-355. DOI: 10.1002/jmri.25479.
[8]
MANN R M, CHO N, MOY L. Breast MRI: state of the art[J]. Radiology, 2019, 292(3): 520-536. DOI: 10.1148/radiol.2019182947.
[9]
PARTRIDGE S C, ZHANG Z, NEWITT D C, et al. Diffusion-weighted MRI findings predict pathologic response in neoadjuvant treatment of breast cancer: the ACRIN 6698 multicenter trial[J]. Radiology, 2018, 289(3): 618-627. DOI: 10.1148/radiol.2018180273.
[10]
LI W, LE N N, ONISHI N, et al. Diffusion-weighted MRI for predicting pathologic complete response in neoadjuvant immunotherapy[J]. Cancers (Basel), 2022, 14(18): 4436. DOI: 10.3390/cancers14184436.
[11]
Li W, NEWITT D C, WILMES L J, et al. Additive value of diffusion-weighted MRI in the I-SPY 2 TRIAL[J]. J Magn Reson Imaging, 2019, 50(6): 1742-1753. DOI: 10.1002/jmri.26770.
[12]
FARDANESH R, MARINO M A, AVENDANO D, et al. Proton MR spectroscopy in the breast: technical innovations and clinical applications[J]. J Magn Reson Imaging, 2019, 50(4): 1033-1046. DOI: 10.1002/jmri.26700.
[13]
DRISIS S, FLAMEN P, IGNATIADIS M, et al. Total choline quantification measured by 1H MR spectroscopy as early predictor of response after neoadjuvant treatment for locally advanced breast cancer: the impact of immunohistochemical status[J]. J Magn Reson Imaging, 2018, 48(4): 982-993. DOI: 10.1002/jmri.26042.
[14]
CHO N, IM S A, KANG K W, et al. Early prediction of response to neoadjuvant chemotherapy in breast cancer patients: comparison of single-voxel 1H-magnetic resonance spectroscopy and 18F-fluorodeoxyglucose positron emission tomography[J]. Eur Radiol, 2016, 26(7): 2279-2290. DOI: 10.1007/s00330-015-4014-7.
[15]
LEONG K M, LAU P, RAMADAN S. Utilisation of MR spectroscopy and diffusion weighted imaging in predicting and monitoring of breast cancer response to chemotherapy[J]. J Med Imaging Radiat Oncol, 2015, 59(3): 268-277. DOI: 10.1111/1754-9485.12310.
[16]
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4): 441-446. DOI: 10.1016/j.ejca.2011.11.036.
[17]
KUMAR V, GU Y H, BASU S, et al. Radiomics: the process and the challenges[J]. Magn Reson Imaging, 2012, 30(9): 1234-1248. DOI: 10.1016/j.mri.2012.06.010.
[18]
GILLIES R J, KINAHAN P E, HRICAK H. Radiomics: images are more than pictures, they are data[J]. Radiology, 2016, 278(2): 563-577. DOI: 10.1148/radiol.2015151169.
[19]
LIU Z Y, WANG S, DONG D, et al. The applications of radiomics in precision diagnosis and treatment of oncology: opportunities and challenges[J]. Theranostics, 2019, 9(5): 1303-1322. DOI: 10.7150/thno.30309.
[20]
GUIOT J, VAIDYANATHAN A, DEPREZ L, et al. A review in radiomics: making personalized medicine a reality via routine imaging[J]. Med Res Rev, 2022, 42(1): 426-440. DOI: 10.1002/med.21846.
[21]
CHEN T, LI M J, GU Y F, et al. Prostate cancer differentiation and aggressiveness: assessment with a radiomic-based model vs. PI-RADS v2[J]. J Magn Reson Imaging, 2019, 49(3): 875-884. DOI: 10.1002/jmri.26243.
[22]
MASSAFRA R, BOVE S, LORUSSO V, et al. Radiomic feature reduction approach to predict breast cancer by contrast-enhanced spectral mammography images[J/OL]. Diagnostics (Basel), 2021, 11(4): 684 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/33920221/. DOI: 10.3390/diagnostics11040684.
[23]
VENKADESH K V, SETIO A A A, SCHREUDER A, et al. Deep learning for malignancy risk estimation of pulmonary nodules detected at low-dose screening CT[J]. Radiology, 2021, 300(2): 438-447. DOI: 10.1148/radiol.2021204433.
[24]
REN J L, TIAN J, YUAN Y, et al. Magnetic resonance imaging based radiomics signature for the preoperative discrimination of stage I-II and III-IV head and neck squamous cell carcinoma[J/OL]. Eur J Radiol, 2018, 106: 1-6 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/30150029/. DOI: 10.1016/j.ejrad.2018.07.002.
[25]
ZHANG B, TIAN J, DONG D, et al. Radiomics features of multiparametric MRI as novel prognostic factors in advanced nasopharyngeal carcinoma[J]. Clin Cancer Res, 2017, 23(15): 4259-4269. DOI: 10.1158/1078-0432.CCR-16-2910.
[26]
HORVAT N, VEERARAGHAVAN H, KHAN M, et al. MR imaging of rectal cancer: radiomics analysis to assess treatment response after neoadjuvant therapy[J]. Radiology, 2018, 287(3): 833-843. DOI: 10.1148/radiol.2018172300.
[27]
CAO K, ZHAO B, LI X T, et al. Texture analysis of dynamic contrast-enhanced MRI in evaluating pathologic complete response (pCR) of mass-like breast cancer after neoadjuvant therapy[J/OL]. J Oncol, 2019, 2019: 1-7 [2023-02-09]. https://www.hindawi.com/journals/jo/2019/4731532/. DOI: 10.1155/2019/4731532.
[28]
HU Y H, XIE C Y, YANG H, et al. Assessment of intratumoral and peritumoral computed tomography radiomics for predicting pathological complete response to neoadjuvant chemoradiation in patients with esophageal squamous cell carcinoma[J/OL]. JAMA Netw Open, 2020, 3(9): e2015927 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/32910196/. DOI: 10.1001/jamanetworkopen.2020.15927.
[29]
WANG W, PENG Y, FENG X Y, et al. Development and validation of a computed tomography-based radiomics signature to predict response to neoadjuvant chemotherapy for locally advanced gastric cancer[J/OL]. JAMA Netw Open, 2021, 4(8): e2121143 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/34410397/. DOI: 10.1001/jamanetworkopen.2021.21143.
[30]
CHEN H M, ZHANG X, WANG X H, et al. MRI-based radiomics signature for pretreatment prediction of pathological response to neoadjuvant chemotherapy in osteosarcoma: a multicenter study[J]. Eur Radiol, 2021, 31(10): 7913-7924. DOI: 10.1007/s00330-021-07748-6.
[31]
MAO N, SHI Y H, LIAN C, et al. Intratumoral and peritumoral radiomics for preoperative prediction of neoadjuvant chemotherapy effect in breast cancer based on contrast-enhanced spectral mammography[J]. Eur Radiol, 2022, 32(5): 3207-3219. DOI: 10.1007/s00330-021-08414-7.
[32]
ZHANG X, YANG Z H, CUI W J, et al. Preoperative prediction of axillary sentinel lymph node burden with multiparametric MRI-based radiomics nomogram in early-stage breast cancer[J]. Eur Radiol, 2021, 31(8): 5924-5939. DOI: 10.1007/s00330-020-07674-z.
[33]
WANG D W, HU Y Q, ZHAN C N, et al. A nomogram based on radiomics signature and deep-learning signature for preoperative prediction of axillary lymph node metastasis in breast cancer[J/OL]. Front Oncol, 2022, 12: 940655 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/36338691/. DOI: 10.3389/fonc.2022.940655.
[34]
SONG D L, YANG F, ZHANG Y J, et al. Dynamic contrast-enhanced MRI radiomics nomogram for predicting axillary lymph node metastasis in breast cancer[J/OL]. Cancer Imaging, 2022, 22(1): 17 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/35379339/. DOI: 10.1186/s40644-022-00450-w.
[35]
SHIMADA Y, KUDO Y, MAEHARA S, et al. Artificial intelligence-based radiomics for the prediction of nodal metastasis in early-stage lung cancer[J/OL]. Sci Rep, 2023, 13(1): 1028 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/36658301/. DOI: 10.1038/s41598-023-28242-7.
[36]
HUANG Y, JIANG X, XU H, et al. Preoperative prediction of mediastinal lymph node metastasis in non-small cell lung cancer based on 18F-FDG PET/CT radiomics[J]. Clin Radiol, 2023, 78(1): 8-17. DOI: 10.1016/j.crad.2022.08.140.
[37]
XUE X Q, YU W J, SHI X, et al. 18F-FDG PET/CT-based radiomics nomogram for the preoperative prediction of lymph node metastasis in gastric cancer[J/OL]. Front Oncol, 2022, 12: 911168 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/36003788/. DOI: 10.3389/fonc.2022.911168.
[38]
MARINO M A, HELBICH T, BALTZER P, et al. Multiparametric MRI of the breast: a review[J]. J Magn Reson Imaging, 2018, 47(2): 301-315. DOI: 10.1002/jmri.25790.
[39]
CAIN E H, SAHA A, HAROWICZ M R, et al. Multivariate machine learning models for prediction of pathologic response to neoadjuvant therapy in breast cancer using MRI features: a study using an independent validation set[J]. Breast Cancer Res Treat, 2019, 173(2): 455-463. DOI: 10.1007/s10549-018-4990-9.
[40]
ZENG Q, KE M M, ZHONG L H, et al. Radiomics based on dynamic contrast-enhanced MRI to early predict pathologic complete response in breast cancer patients treated with neoadjuvant therapy[J/OL]. Acad Radiol, 2022 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/36564256/. DOI: 10.1016/j.acra.2022.11.006.
[41]
LIU Z Y, LI Z L, QU J R, et al. Radiomics of multiparametric MRI for pretreatment prediction of pathologic complete response to neoadjuvant chemotherapy in breast cancer: a multicenter study[J]. Clin Cancer Res, 2019, 25(12): 3538-3547. DOI: 10.1158/1078-0432.CCR-18-3190.
[42]
BIAN T T, WU Z J, LIN Q, et al. Radiomic signatures derived from multiparametric MRI for the pretreatment prediction of response to neoadjuvant chemotherapy in breast cancer[J/OL]. Br J Radiol, 2020, 93(1115): 20200287 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/32822542/. DOI: 10.1259/bjr.20200287.
[43]
LI C C, LU N, HE Z F, et al. A noninvasive tool based on magnetic resonance imaging radiomics for the preoperative prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer[J]. Ann Surg Oncol, 2022, 29(12): 7685-7693. DOI: 10.1245/s10434-022-12034-w.
[44]
BRAMAN N M, ETESAMI M, PRASANNA P, et al. Erratum to: Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI[J/OL]. Breast Cancer Res, 2017, 19(1): 80 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/28693537/. DOI: 10.1186/s13058-017-0862-1.
[45]
BRAMAN N, PRASANNA P, WHITNEY J, et al. Association of peritumoral radiomics with tumor biology and pathologic response to preoperative targeted therapy for HER2 (ERBB2)-positive breast cancer[J/OL]. JAMA Netw Open, 2019, 2(4): e192561 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/31002322/. DOI: 10.1001/jamanetworkopen.2019.2561.
[46]
PUJARA A C, KIM E, AXELROD D, et al. PET/MRI in breast cancer[J]. J Magn Reson Imaging, 2019, 49(2): 328-342. DOI: 10.1002/jmri.26298.
[47]
UMUTLU L, KIRCHNER J, BRUCKMANN N M, et al. Multiparametric 18F-FDG PET/MRI-based radiomics for prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer[J/OL]. Cancers (Basel), 2022, 14(7): 1727 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/35406499/. DOI: 10.3390/cancers14071727.
[48]
CHOI J H, KIM H A, KIM W, et al. Early prediction of neoadjuvant chemotherapy response for advanced breast cancer using PET/MRI image deep learning[J/OL]. Sci Rep, 2020, 10(1): 21149 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/33273490/. DOI: 10.1038/s41598-020-77875-5.
[49]
HOSNY A, PARMAR C, QUACKENBUSH J, et al. Artificial intelligence in radiology[J]. Nat Rev Cancer, 2018, 18(8): 500-510. DOI: 10.1038/s41568-018-0016-5.
[50]
BITENCOURT A G V, GIBBS P, ROSSI SACCARELLI C, et al. MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after neoadjuvant therapy in HER2 overexpressing breast cancer[J/OL]. EBioMedicine, 2020, 61: 103042 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/33039708/. DOI: 10.1016/j.ebiom.2020.103042.
[51]
HUSSAIN L, HUANG P, NGUYEN T, et al. Machine learning classification of texture features of MRI breast tumor and peri-tumor of combined pre- and early treatment predicts pathologic complete response[J/OL]. Biomed Eng Online, 2021, 20(1): 63 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/34183038/. DOI: 10.1186/s12938-021-00899-z.
[52]
TAHMASSEBI A, WENGERT G J, HELBICH T H, et al. Impact of machine learning with multiparametric magnetic resonance imaging of the breast for early prediction of response to neoadjuvant chemotherapy and survival outcomes in breast cancer patients[J]. Invest Radiol, 2019, 54(2): 110-117. DOI: 10.1097/RLI.0000000000000518.
[53]
QU Y H, ZHU H T, CAO K, et al. Prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer using a deep learning (DL) method[J]. Thorac Cancer, 2020, 11(3): 651-658. DOI: 10.1111/1759-7714.13309.
[54]
ZHOU Z J, ADRADA B E, CANDELARIA R P, et al. Prediction of pathologic complete response to neoadjuvant systemic therapy in triple negative breast cancer using deep learning on multiparametric MRI[J/OL]. Sci Rep, 2023, 13(1): 1171 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/36670144/. DOI: 10.1038/s41598-023-27518-2.
[55]
WILKINSON M D, DUMONTIER M, JAN AALBERSBERG I, et al. Addendum: The FAIR Guiding Principles for scientific data management and stewardship[J/OL]. Sci Data, 2019, 6(1): 6 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/30890711/. DOI: 10.1038/s41597-019-0009-6.
[56]
BETTINELLI A, MARTURANO F, AVANZO M, et al. A novel benchmarking approach to assess the agreement among radiomic tools[J/OL]. Radiology, 2022, 303(2): E30 [2023-02-09]. https://pubmed.ncbi.nlm.nih.gov/35468022/. DOI: 10.1148/radiol.229008.

上一篇 MRI影像组学在乳腺癌腋窝淋巴结转移预测中的研究进展
下一篇 简化乳腺MRI在乳腺癌中的临床研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2