分享:
分享到微信朋友圈
X
基础研究
新生猪缺氧缺血脑损伤后基底节乳酸代谢及其转运体表达的研究
郑阳 王晓明

郑阳,王晓明.新生猪缺氧缺血脑损伤后基底节乳酸代谢及其转运体表达的研究.磁共振成像, 2017, 8(1): 45-50. DOI:10.12015/issn.1674-8034.2017.01.011.


[摘要] 目的 通过1H-MRS在体检测新生猪缺氧缺血脑损伤(HIBI)模型在损伤后不同时间点乳酸含量的变化并与乳酸转运体(MCT-2、MCT-4)的表达特征进行相关研究,以期进一步明确乳酸在HI后脑损伤中的作用机制。材料与方法 选用出生后3~5 d的健康新生猪,体重约为1~1.5 kg,对照组5头,HIBI模型组30头。通过1H-MRS成像检测缺氧缺血后不同时间点基底节区乳酸的变化并与MCT-2、MCT-4的表达进行相关分析,P<0.05认为差异有统计学意义。结果 (1)1H-MRS结果显示,HIBI后Lac峰值出现在2~6 h,随后Lac逐渐下降,逐步降低至与对照组水平相当。除24~48 h、48~72 h与对照组差异无统计学意义(P=0.86、0.26)外,其余模型组与对照组差异均有统计学意义(P<0.05)。(2) MCT-2、MCT-4在HI后表达先上调后降低,均在12~24 h达到高峰,与其余组均有统计学差异(P<0.05)。结论 缺氧缺血后,乳酸含量的变化可调节神经元及胶质细胞乳酸相关转运体的表达。
[Abstract] Objective: To investigate the expression characteristics of lactate and associated transporters in basal ganglia following hypoxic-ischemic reperfusion brain injury in a piglet model.Materials and Methods: A total of 35 healthy piglets (3—5 days old, 1.0—1.5 kg) were selected. They were divided into control (n=5) and hypoxic-ischemic (HI) model groups (n=30). The HI model group was further divided into six groups according to 1H-magnetic resonance spectroscopy (1H-MRS) scan times after HI (0-2 h, 2-6 h, 6—12 h, 12—24 h, 24-48 h and 48—72 h; n=5/group). The HI model was established by bilateral common carotid artery occlusion and simultaneous hypoxia treatment for 40 min. Piglets in the control group received the same surgical procedure without the hypoxia-ischemia process. 1H-MRS imaging was performed at various time points after HI. The right basal ganglia was the region of interest (ROI) in 1H-MRS imaging for which data was processed by LcModel software. Animals were euthanized immediately after the last scan and the whole brain was quickly removed and bilateral hemispheres separated. The right hemisphere was used for the pathological examination and immunohistochemical staining of monocarboxylate transporters (MCTs). ANOVA analyses were conducted. P<0.05 represented statistical significance.Results: (1) The lactate level became reduced after an initial increase, with the maximal level occurring around 2—6 h following HI. (2) The expression of both MCT-2 and MCT-4 in the basal ganglia initially reached a peak value at 12—24 h and decreased thereafter and they were significantly different at 12-24 h after HI compared to the control group and the other time points of the HI model group (P<0.05).Conclusions: These results indicate that lactate content has potential to regulate the expression of its related transporters in neuronal and glial cell and they have a synergistic effect on the energy metabolism following hypoxic-ischemic reperfusion brain injury.
[关键词] 脑;缺氧缺血;乳酸;新生猪;磁共振波谱学
[Keywords] Brain;Hypoxia-ischemia;Lactate;Piglet;Magnetic resonance spectroscopy

郑阳 中国医科大学附属盛京医院放射科,沈阳 110004

王晓明* 中国医科大学附属盛京医院放射科,沈阳 110004

通讯作者:王晓明,E-mail:wangxm024@163.com


基金项目: 国家自然科学基金 编号:30570541、30770632、81271631
收稿日期:2016-11-15
接受日期:2016-12-08
中图分类号:R445.2; R743 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2017.01.011
郑阳,王晓明.新生猪缺氧缺血脑损伤后基底节乳酸代谢及其转运体表达的研究.磁共振成像, 2017, 8(1): 45-50. DOI:10.12015/issn.1674-8034.2017.01.011.

       新生脑组织需氧量较大,正常生理状态下,脑组织内没有或仅存在少量的乳酸(Lac),当脑内缺氧缺血(hypoxic ischemic,HI)时,Lac含量增多,提示无氧代谢加强,有氧能量代谢过程障碍[1,2,3],无氧代谢过程产生Lac,堆积的Lac可以使糖代谢受到抑制,使ATP耗竭,从而使细胞内酸中毒加重[4,5]。与此同时,Lac作为HI后神经元恢复有氧能量代谢的重要底物在HI后早期起着重要的作用。基于研究结果[6,7]显示,中枢神经系统的星形胶质细胞(AS)和神经元之间存在着Lac转运,即Astrocyte-neuron lactate shuttle (ANLS)。在缺氧缺血性脑损伤(hypoxic ischemic brain injury,HIBI)中,Lac及其转运体扮演重要角色[8]。AS和神经元之间通过MCTs转运和摄取Lac,即Lac通过AS细胞膜上MCT-4转运出胞外,聚集在细胞外腔隙中,神经元通过自身膜上的MCT-2将Lac摄入细胞内,再通过乳酸脱氢酶将其转化成丙酮酸,进入三羧酸循环有氧代谢[9,10],为神经元活动提供能量代谢的底物。

       明确HI后Lac及MCTs的具体变化,可深入理解Lac在能量代谢调节中的具体作用。目前阐述Lac在能量代谢,特别是在脑HI后神经恢复的研究还很缺乏,研究HIBI后脑内Lac的变化以及相关转运体的表达有助于了解HIBI后神经元能量恢复及神经保护机制。

       本研究应用新生猪的急性缺氧缺血模型模拟新生儿HIBI病理变化,应用MRS成像LcModel(linear combination of Model in vitro spectra)软件后处理定量分析HI后脑组织内Lac含量,结合神经系统单羧酸转运体(Monocarboxylic acid transporter,MCT)表达,进一步理解HIBI病理生理变化。

1 材料与方法

1.1 实验动物

       选用出生后3~5 d的健康新生猪共41头(大白猪,也叫大约克夏猪),雌雄不限,体重1~1.5 kg。排除建模失败及运动伪影等6头,共35头纳入数据采集,随机分配到对照组(n=5)及模型组(n=30)。模型组根据HIBI后MR扫描时间段又进一步分成6个亚组(0~2 h;2~6 h;6~12 h;12~24 h;24~48 h;48~72 h,n=5/group)。所有实验动物执行《实验动物管理条例》和《实验动物许可证管理办法》规定的标准。上述实验设计通过本院伦理审核(伦理批号为:2015PS337K)。

1.2 实验模型制作

1.2.1 对照组

       室温保持在28~30℃,以0.6 ml/Kg剂量肌注麻醉药(速眠新注射液,长春军事医学院兽医研究所)。气管插管(直径2.5 mm),同时连接到小动物呼吸机(TKR-200C,江西特力麻醉呼吸设备中国有限公司)进行机械通气。通气参数:100%氧气,呼吸机参数为呼吸比(I/E)为1:1.5,呼吸频率30次/min,压力:0.05~0.06 MPa;使用TuffSat手掌式脉搏血氧仪(GE,美国)监测心率及血氧饱和度。耳缘静脉置管针固定用于补液及注射药物。颈部皮肤采用碘伏消毒,颈部正中切口,小心游离双侧颈总动脉。

1.2.2 HIBI模型组

       模型组新生猪进行上述相同过程,放置保温箱约30 min等待状态稳定后,用动脉夹夹闭双侧颈总动脉阻断血流,同时机械通入浓度为6%的氧气(大连大特气体有限公司),计时维持该缺氧缺血状态40 min,时间到40 min后吸入100%氧气(大连大特气体有限公司),同时恢复双侧颈动脉血流,最后缝合切口。全程严密监控血氧饱和度和心率。若术中及术后发生休克及抽搐应及时处理[11]。待自主呼吸恢复后停用呼吸机,使其自主呼吸。注意在MR扫描时应注意保温,避免温度波动给实验结果带来偏差。术后进行MR成像时若未恢复自主呼吸可用人工抱球法进行MR检查[11,12]

1.3 1H MRS扫描及数据处理

       采用Philips 3.0 T MRI (Achieva 3.0 T TX;Philips Healthcare Systems,Best,the Netherlands)进行扫描,笔形束,二阶匀场。体线圈发射,八通道头线圈(SENSE)接收。MRS采用SV序列,点、解析波谱(point-resolved spectroscopy ,PRESS)法,单体素长TE扫描:TR 2000 ms,TE 144 ms,信号(叠加)平均次数(NSA)为64,体素(VOI)10 mm×10 mm×10 mm。感兴趣区(regions of interest,ROIs)选择右侧基底节区(图1)。对照组及模型组的ROI均为右侧基底节区同一位置。扫描之前水抑制及匀场由扫描仪自动完成。MRS扫描之前进行常规MR扫描,获得冠状面T1WI、T2WI、DWI及矢状面T1WI,用于观察脑形态及MRS定位。每只新生猪在手术前均进行MRS扫描,获取基础数据,作为自身对照,在HI后按分组中规定的时间点行MR扫描。扫描获得的波谱数据通过(linear combination of Model in vitro spectra,LcModel)进行后处理。NAA位于2.02 ppm ,Cr位于3.02 ppm ,Cho位于3.2 ppm ,Lac位于1.33 ppm。

图1  MRS成像ROI的定义。结合常规扫描T2WI横断面,选取右侧基底节区作为MRS感兴趣区
图2  对照组及HIBI模型组Lac随时间变化(横线表示均值及标准差)。在HIBI后Lac开始上升,2~6 h内达到峰值,继而逐渐下降,Lac在24~48 h与对照组相当,48~72 h时Lac稍高于对照组
Fig. 1  Definition of ROIs in 1H-MRS. Illustration of the ROI in MRS scanning. For all animals, the right basal ganglion is selected as the ROI (T2WI image served as reference for the selection of ROIs in this study).
Fig. 2  Changes in Lac content in basal ganglia within control group and HIBI group. The Lac peak increases 2—6 h after HI. The level of Lac gradually decreased and became slightly higher than the control group at 48—72 h.

1.4 免疫组化染色

       完成最后一次1H-MRS扫描后,迅速取出脑组织。分离双侧大脑半球,右侧大脑半球置于10%中性甲醛中固定24~48 h,按冠状切成4 mm厚组织片,留取含有基底节区和海马的层面,经脱水、二甲苯透明,石腊包埋切片,切片厚4 μm,进行MCT-2、MCT-4免疫组化染色,方法采用链酶菌抗生物素蛋白-过氧化物酶连结法(即S-P法),DAB显色。切片经37°烤箱烤干后常规脱水、透明、封片。阴性对照则用PBS代替一抗。MCT-2、MCT-4抗体均由Abcam公司提供。

1.5 实验结果判断及处理

       MCTs的免疫组化染色结果判定由两位病理科医师完成。以神经元及AS细胞膜出现棕黄色颗粒为阳性表达。应用Nikon Edipse E 800显微镜及NIS-Elements F 2.30图像采集软件采集HE染色图像和免疫组化图像,应用NIS-Elements BR 2.10图像分析软件对免疫组化图像进行光密度值(optical density value,OD value)分析,400倍镜下观察。OD值越高,表达越高。上述指标在基底节区各观察5个视野,然后综合5个视野的数据,以此分析和判断各组各时段MCTs的表达情况。数据以均数±标准差(±s)表示,应用ANOVA分析判断各组之间有无差异。

1.6 统计分析

       数据统计学处理采用软件SPSS 17.0处理,计量资料以均数±标准差(±s)表示。采用ANOVA方差分析,比较对照组及HIBI组各个时间点基底节区Lac含量及MCTs表达是否存在统计学差异。P<0.05认为差异具有统计学意义。

2 结果

2.1 基底节区Lac的测量

       HI再灌注后,Lac呈现先上升,后降低的趋势,在2~6 h达到最高值。达到峰值后随时间逐步下降,直至最终与对照组水平相当或稍高于对照组(图2)。除24~48 h、48~72 h Lac含量与对照组无差异外(P=0.86、P=0.26),其余各组与对照组均有统计学差异(P=0.00)。Lac含量最高时间点2~ 6 h与对照组及模型组其余各时间点均有统计学差异(P <0.05)。

       对照组及HIBI模型组部分时间点1H-MRS扫描数据经Lcmodel拟合谱线如图3所示。

图3  对照组及模型组部分时间段1H-MRS经LcModel软件处理后结果。A、B、C、D分别为对照组、HIBI后2 h、24 h、及70 h右侧基底节区1H-MRS的谱线。HI后2 h、24 h Lac峰明显升高,呈倒立单峰或双峰改变,波峰高而尖;70 h可见Lac峰下降
Fig. 3  Results of 1H-MRS data at selected time points sample data analyzed by LcModel. A, B, C and D are the 1H-MRS spectral curves of the right basal ganglion analyzed by LcModel in the control group and the HIBI group at 2 h, 24 h and 70 h, respectively. At 2 h and 24 h after HI insult, the Lac peaks (1.2—1.4 ppm) are markedly elevated, showing an inverted single-peak or double-peak change; at 70 h, the lactate peak was lower.

2.2 HI后基底节区MCT-2、MCT-4表达

       HI后,基底节区MCT-2、MCT-4表达均为先升高后降低,12~24 h表达达到高峰,而后下降,如图4图5。MCT-2、MCT-4在12~24 h表达与对照组及模型组其他时间点均存在统计学差异(P<0.05)。随着HI时间延长,二者表达降低。

       MCT-2、MCT-4表达与Lac含量变化趋势一致,HI后均为先升高后降低,但MCT-2、MCT-4出现峰值的时间晚于Lac。

图4  对照组与HI模型组基底节区MCT-2、MCT-4表达。A~C为对照组、24 h、72 h基底节区MCT-2的表达。MCT-2主要表达于神经元细胞膜,呈棕黄色。与对照组(A)相比较,HI后24 h (B)神经元表达的MCT-2颜色加深,阳性细胞数目增多。MCT-2在72 h表达减低(C)。D~F为对照组、HI后24 h、72 h基底节区MCT-4的表达。MCT-4主要表达于神经胶质细胞膜(D)。HI后24 h (E) MCT-4染色较对照组(D)加深。MCT-4在72 h表达减低(F)
Fig. 4  Expression of MCT-2 and MCT-4 in the basal ganglia in control and HI model groups. A—C: Expression of MCT-2 in the control group and at 24 h, and 72 h of the HI model group. MCT-2 was mainly expressed in the membrane of neurons seen in brown (A). Compared with the control group (A), MCT-2 staining at 24 h after HI (B) was darker and greater numbers of positive cells was observed. The expression of MCT-2 was reduced at 72 h (C). D—F: Expression of MCT-4 in basal ganglia of the control group and 24 h, and 72 h of the model group. MCT-4 was mainly expressed in the membranes of astrocytes (D). MCT-4 staining was darker at 24 h after HI (E) compared to the control group (D). The expression of MCT-4 was reduced 72 h after HI (F).
图5  HI后72 h内基底节区MCT-2、MCT-4免疫组化染色变化趋势。A为基底节区MCT-2的表达趋势;B为基底节区MCT-4的表达趋势。MCT-2、MCT-4在12-24h表达最高,随后降低
Fig. 5  Change in expression of MCT-2 and MCT-4 in the basal ganglia after HI. The expression of MCT-2 (A) and MCT-4 (B) was highest at 12—24 h, and then decreased.

3 讨论

       正常状态下,脑组织所需要的能量大部分来自葡萄糖的有氧代谢[13,14,15],生理状态下,脑能量消耗的90%~95%发生在神经元,但是约80%的葡萄糖利用发生在AS,这表明AS必定释放一种葡萄糖中间代谢产物被神经元摄取和利用,以满足神经元较高的能耗。近年来的研究[16]表明,脑葡萄糖代谢过程中,Lac是AS和神经元能量信息交流的载体,AS摄取葡萄糖后转变为Lac并提供给神经元,Lac是脑内能量代谢中重要的中间代谢物质。

       HIBI是围产期多种原因导致的脑组织病变,是一种全脑的HI后再灌注脑损伤。当脑组织由低灌注转移到再灌注时,会出现一系列病理生理改变。

       HI再灌注后由于AS与神经元间存在Lac穿梭,Lac作为神经传递的代谢底物起着重要的作用,脑在HI状态下,AS内相关信号通路被激活,Lac作为重要的神经递质之一,通过一系列生化过程的改变,可调节能量代谢、分泌神经保护物质等发挥神经保护作用,并对细胞凋亡起调控作用[6,17]。AS和神经元之间可以通过MCTs转运和摄取Lac为神经元活动提供能量代谢的底物,即酵解产生的Lac通过细胞膜上MCT转运出AS,聚集在细胞外腔隙中,神经元通过自身膜上的MCT将Lac摄入,再通过乳酸脱氢酶将其转化成丙酮酸,进入三羧酸循环有氧代谢[18,19,20,21,22,23]。在AS和神经元中分布着不同亚型的MCTs ,MCT-4主要表达于AS,而MCT-2主要表达于神经元[22,23]。AS和神经元之间通过MCTs转运和摄取Lac,即Lac通过AS细胞膜上MCT-4转运出胞外,聚集在细胞外腔隙中,神经元通过自身膜上的MCT-2将Lac摄入细胞内,再通过乳酸脱氢酶将其转化成丙酮酸,进入三羧酸循环有氧代谢。在HIBI中,Lac及其转运体扮演重要角色[8]

       本研究结果显示,在HIBI早期,即出现Lac增加(图3),Lac水平增高是脑HI的重要标志,这与之前研究相一致[24]。这是由于脑在缺氧情况下大量丙酮酸被还原成Lac。再灌注后Lac逐渐减少,是由于部分有氧代谢的恢复,以及再灌注后部分Lac被排出。在48~72 h Lac水平稍高于对照组,可能有以下原因:HI后继发能量衰竭致线粒体损伤,有氧代谢障碍;修复期病损处巨噬细胞浸润、AS增生,该两种细胞活动均可使Lac增高[25],由于胶质细胞碱化,将导致糖酵解速率增加[26]。同时,大量的Lac能够帮助神经存活,对神经起到保护的作用[27],因此,Lac作为HI后神经恢复的有氧能量代谢的重要底物在HI后早期起着重要的作用。Lac作为HI的标志,出现最早、且最早达到高峰。Lac峰值出现早于MCTs,高浓度Lac或缺氧使部分糖酵解酶激活[28,29],继而上调MCTs。免疫组化染色结果显示,HI后MCT-2、MCT-4表达也增高,于12~24 h达到高峰,而后降低。

       本研究中,1H-MRS成像选择基底节区作为ROI,这是由于基底节是神经元细胞集中地,在缺氧缺血性脑损伤后,最易导致Lac与谷氨酸在细胞外大量堆积[30],一旦发生神经元损伤则后果严重,可导致神经系统障碍及脑瘫[31,32,33],同时基底节区也是新生猪脑解剖中最容易分辨的区域,所以将基底节区作为感兴趣区进行研究。选择此区域作为感兴趣区可以增加生化指标检测的敏感性;另一方面也可以避免因脑边缘部脂肪波的干扰而影响Lac波的准确测定。

       本研究1H-MRS扫描数据采用LcModel软件包后处理,基线纠正、谱线分解以及精确获取代谢物绝对浓度等问题得到有效解决[34]。LcModel能够自动完成基线校正、涡流校正、相位校正等,可以在基线不平、信噪比较低时得到较理想的拟合谱线和较准确的代谢物浓度(图4)。研究表明LcModel计算出的物质绝对浓度的变异系数要低于代谢物比值[35,36]

       本研究采用新生猪制作急性HIBI模型,该模型先阻断双侧颈内动脉血供,维持一定缺氧缺血状态后,恢复血供,有利于模拟再灌注的研究[37,38,39]。本研究建立模型过程中采用完全夹闭双侧颈内动脉,而临床新生儿HI时发病原因较为复杂,因此该模型可能和临床病例有一定的病理生理差别。该模型制作方法虽然有些复杂,但重复性高,实验结果可靠。

       总之,本研究1H-MRS成像结合LcModel软件分析Lac绝对浓度,结合其相关转运体的表达情况,分析了HI再灌注后部分能量代谢调节的机制,提示Lac的变化对其转运体的表达具有调节作用。

[1]
Liu Y, Jissendi-Tchofo P, Metens T. MR imaging, diffusion imaging, and proton MR spectroscopy at 3T in full-term neonates with hypoxic-ischemic encephalopathy. Chin J Magn Reson Imaging, 2011, 2(1):13-18.
Liu Y, Jissendi-Tchofo P, Metens T.足月儿缺氧缺血性脑病的常规MRI、DWI、DTI及MRS表现.磁共振成像, 2011, 2(1):13-18.
[2]
Zhang Y, Hao D, Lv X, et al. Quantification of MRI and MRS characteristics changes in a rat model at different stage of cerebral ischemia. Neurol Res, 2016, 38(7): 640-646.
[3]
Hapuarachchi T, Moroz T, Bainbridge A, et al. Simulating NIRS and MRS measurements during cerebral hypoxia-ischaemia in piglets using a computational model. Adv Exp Med Biol, 2014, 812: 187-193.
[4]
Wang HW, Wang XM, Guo QY. The correlation between DTI parameters and levels of AQP-4 in the early phases of cerebral edema after hypoxic-ischemic/reperfusion injury in piglets. Pediatr Radiol, 2012, 42(8): 992-999.
[5]
Distefano G, Praticò AD. Actualities on molecular pathogenesis and repairing processes of cerebral damage in perinatal hypoxic-ischemic encephalopathy. Ital J Pediatr, 2010, 36: 63.
[6]
Dienel GA. Lactate shuttling and lactate use as fuel after traumatic brain injury: metabolic considerations. J Cereb Blood Flow Metab, 2014, 34(11): 1736-1748.
[7]
Mächler P, Wyss MT, Elsayed M, et al. In Vivo evidence for a lactate gradient from astrocytes to neurons. Cell Metab, 2016, 23(1): 94-102.
[8]
Bouzat P, Oddo M. Lactate and the injured brain: friend or foe? Curr Opin Crit Care, 2014, 20(2): 133-140.
[9]
Pierre K, Pellerin L, Debernardi R, et al. Cell specific localization of monocarboxylate transporters, MCT1 and MCT2, in the adult mouse brain revealed by double immunohistochemical labeling and confocal microscopy. Neurosci, 2000, 100 (3): 617-627.
[10]
Pellerin L, Magistretti PJ. How to balance the brain energy budget while spending glucose differently. J Physiol, 2003, 546(2): 235.
[11]
Munkeby BH, De Lange C, Emblem KE, et al. A piglet model for detection of hypoxic-ischemic brain injury with magnetic resonance imaging. Acta Radiol, 2008, 49(9): 1049-1057.
[12]
Li YK, Liu GR, Zhou XG, et al. Experimental hypoxic-ischemic encephalopathy: comparison of apparent diffusion coefficients and proton magnetic resonance spectroscopy. Magn Reson Imaging, 2010, 28(4): 487-494.
[13]
Ghosh A, Highton D, Kolyva C, et al. Hyperoxia results in increased aerobic metabolism following acute brain injury. J Cereb Blood Flow Metab, 2016. DOI:
[14]
Dickey EJ, Long SN, Hunt RW. Hypoxic ischemic encephalopathy--what can we learn from humans? J Vet Intern Med, 2011, 25(6): 1231-1240.
[15]
Lai MC, Yang SN. Perinatal hypoxic-ischemic encephalopathy. J Biomed Biotechnol, 2011: 609813.
[16]
Carpenter KL, Jalloh I, Hutchinson PJ. Glycolysis and the significance of lactate in traumatic brain injury. Front Neurosci, 2015, 9: 112.
[17]
Mehta SL, Manhas N, Raghubir R. Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Rev, 2007, 54(1): 34-66.
[18]
Chiry O, Fishbein WN, Merezhinskaya N, et al. Distribution of the monocarboxylate transporter MCT2 in human cerebral cortex: an immunohistochemical study. Brain Res, 2008, 1226: 61-69.
[19]
Baltan S. Can lactate serve as an energy substrate for axons in good times and in bad, in sickness and in health? Metab Brain Dis, 2015, 30(1): 25-30.
[20]
Pellerin L, Bouzier-Sore AK, Aubert A, et al. Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia, 2007, 55(12): 1251-1262.
[21]
Patet C, Suys T, Carteron L, et al. Cerebral lactate metabolism after traumatic brain injury. Curr Neurol Neurosci Rep, 2016, 16(4): 31.
[22]
Hertz L, Dienel GA. Lactate transport and transporters: general principles and functional roles in brain cells. J Neurosci Res, 2005, 79 (12): 11-18.
[23]
Simpson IA, Carruthers A, Vannucci SJ. Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab, 2007, 27(11): 1766-1791.
[24]
Hackett MJ, Sylvain NJ, Hou H, et al. Concurrent glycogen and lactate imaging with FTIR spectroscopy to spatially localize metabolic parameters of the glial response following brain ischemia. Anal Chem, 2016. DOI:
[25]
Fan G, Wu Z, Chen L, et al. Hypoxia-ischemic encephalopathy in full-term neonate: correlation proton MR spectroscopy with MR imaging. Eur J Radiol, 2003, 45(2): 91-98.
[26]
Fujimoto S, Nabe K, Takehiro M, et al. Impaired metabolism-secretion coupling in pancreatic beta-cells: role of determinants of mitochondrial ATP production. Diabetes Res Clin Pract, 2007, 77 (Suppl 1): S2-10.
[27]
Brown AM, Ransom BR. Astrocyte glycogen and brain energy metabolism. Glia, 2007, 55(12):1263-1271.
[28]
Espinoza-Rojo M, Iturralde-Rodríguez KI, Chánez-Cárdenas ME, et al. Glucose transporters regulation on ischemic brain: possible role as therapeutic target. Cent Nerv Syst Agents Med Chem, 2010, 10(4): 317-325.
[29]
Chen C, Chen HJ, Qian LH, et al. Effect of different blood glucose levels on the expression of cerebral GLUT3 mRNA in neonatal rats with hypoxia-ischemia. Zhongguo Dang Dai Er Ke Za Zhi, 2006, 8(5): 395-401.
[30]
Zhu W, Zhong W, QI J, et al. Proton magnetic resonance spectroscopy in neonates with hypoxic-ischemic injury and its prognostic value. Transl Res, 2008, 152(5): 225-232.
[31]
Logitharajah P, Rutherford MA, Cowan FM. Hypoxic-ischemic encephalopathy in preterm infants: antecedent factors, brain imaging, and outcome. Pediatr Res, 2009, 66(2): 222-229.
[32]
Martinez-Biarge M, Diez-Sebastian J, Kapellou O, et al. Predicting motor outcome and death in term hypoxic-ischemic encephalopathy. Neurology, 2011, 76(24): 2055-2061.
[33]
Rocha-Ferreira E, Hristova M. Plasticity in the Neonatal Brain following Hypoxic-Ischaemic Injury. Neural plasticity, 2016: 4901014.
[34]
Provencher SW. LCModel1 & LCMgui User's Manual. 2005.
[35]
Atwood T, Payne VS, Zhao W, et al. Quantitative magnetic resonance spectroscopy reveals a potential relationship between radiation-induced changes in rat brain metabolites and cognitive impairment. Radiat Res, 2007, 168(5): 574-581.
[36]
Verma A, Saraswat VA, Radha Krishna Y, et al. In vivo (1)H magnetic resonance spectroscopy-derived metabolite variations between acute-on-chronic liver failure and acute liver failure. Liver Int, 2008. DOI:
[37]
Kyng KJ, Skajaa T, Kerrn-Jespersen S, et al. A Piglet model of neonatal hypoxic-ischemic encephalopathy. J Vis Exp, 2015, 16(99): e52454.
[38]
Zhang YF, Wang XY, Feng Guo, et al. Simultaneously changes in striatum dopaminergic and glutamatergic parameters following hypoxic-ischemic neuronal injury in newborn piglets. Eur J Paediatr Neurol, 2012, 16(3): 271-278.
[39]
Zhang YF, Wang XY, Cao L, et al. Effects of hypoxic-ischemic brain injury on striatal dopamine transporter in newborn piglets: evaluation of 11C-CFT PET/CT for DAT quantification. Nucl Medi Biology, 2011, 38(8): 1205-1212.

上一篇 输卵管积液的CT及MRI影像学诊断价值研究
下一篇 短暂性脑缺血大鼠模型的水通道蛋白磁共振分子成像研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2