分享:
分享到微信朋友圈
X
综述
体素内不相干运动成像在脑肿瘤中的研究进展
李俊杰 张辉

Cite this article as: Li JJ, Zhang H. Intravoxel incoherent motion imaging: research advances in brain tumors[J]. Chin J Magn Reson Imaging, 2021, 12(3): 82-84.本文引用格式:李俊杰, 张辉. 体素内不相干运动成像在脑肿瘤中的研究进展[J]. 磁共振成像, 2021, 12(3): 82-84. DOI:10.12015/issn.1674-8034.2021.03.019.


[摘要] 体素内不相干运动(intravoxel incoherent motion,IVIM)成像近年来已成为脑肿瘤常规影像的重要补充,因其可同时获得脑肿瘤扩散和灌注信息,有利于更全面了解肿瘤生理病理变化及肿瘤微环境的信息。目前,IVIM已在脑肿瘤的术前诊断、分级诊断及脑胶质瘤基因型预测和预后评估中取得了一定的成果。该文将综述IVIM基本原理及其在脑肿瘤中的临床应用现状。
[Abstract] Intravoxel incoherent motion (IVIM) imaging has become an important supplement to conventional brain tumor imaging in recent years. It can obtain the information of brain tumor diffusion and perfusion at the same time, which is conducive to a more comprehensive understanding of tumor physiological and pathological changes and tumor microenvironment. Recently, IVIM has achieved certain results in preoperative diagnosis, grading diagnosis, genotype monitoring and prognosis evaluation of glioma. This article will review the basic principle of IVIM and its clinical application in brain tumors.
[关键词] 体素内不相干运动成像;脑肿瘤;磁共振成像;扩散加权成像
[Keywords] intravoxel incoherent motion;brain tumor;magnetic resonance imaging;diffusion weighted imaging

李俊杰 1   张辉 2*  

1 山西医科大学医学影像学院,太原 030001

2 山西医科大学第一医院影像科,太原 030001

张辉,E-mail:zhanghui_mr@163.com

作者利益冲突声明:全体作者均声明无利益冲突。


收稿日期:2020-10-30
接受日期:2021-01-21
DOI: 10.12015/issn.1674-8034.2021.03.019
本文引用格式:李俊杰, 张辉. 体素内不相干运动成像在脑肿瘤中的研究进展[J]. 磁共振成像, 2021, 12(3): 82-84. DOI:10.12015/issn.1674-8034.2021.03.019.

       脑肿瘤术前的影像学表征为患者早期精准诊断及预后评估提供了重要临床指导,传统磁共振扩散加权成像(diffusion weighted imaging,DWI)可以无创评估人体内水分子的扩散运动信息,但忽略了微循环灌注对水分子扩散的影响。因此,Le等[1]提出了多b值DWI成像技术,即体素内不相干运动(intravoxel incoherent motion,IVIM)成像,该技术无需外源性对比剂便可无创定量评估体素内水分子扩散运动及微循环灌注情况,更真实地反映脑肿瘤组织内的微观信息,对实现脑肿瘤的精准诊疗意义重大。

1 IVIM成像原理简介

       临床工作中最常用的单指数扩散模型DWI,其描述的水分子扩散包括细胞外水分子运动、细胞内水分子运动和微循环血管内水分子运动。而IVIM成像技术是基于DWI理论的发展,可以分离出微循环中水分子扩散运动的MR成像技术。前提是把人体内血管网络和水分子都看作随机分布,通过数学模型将微循环内水分子受到的磁化矢量影响而导致的信号衰减进行量化,国外学者[1]提出并解释了微循环内水分子扩散运动与血管壁和血流阻力及黏稠度相关,通过分析其与MRI信号之间的关系,将其量化并定义为假性扩散系数(false diffusional,D*)。除D*外,IVIM参数还包括真性扩散系数(diffusion coefficient,D),代表微循环外体素内水分子的扩散运动,与细胞成分和构筑相关,而灌注分数(perfusion fraction,f)表示微循环外水分子占总体水分子的百分比,受毛细血管血容量影响。结合三种参数更有助于理解水分子的扩散运动。

2 IVIM在脑肿瘤中的应用

2.1 IVIM鉴别脑肿瘤

       高级别胶质瘤(high-grade glioma,HGG)常规影像表现上常常与原发中枢神经系统淋巴瘤(primary central nervous system lymphoma,PCNSL)、颅内单发脑转移瘤相似,均表现为颅内单发且明显强化的肿块,仅靠常规影像学方法无法准确鉴别。PCNSL通常采用放化疗治疗,HGG常常需要手术切除,而颅内单发脑转移瘤则需要根据患者症状选择合适的对症治疗方案。因此,对三种疾病的准确鉴别对患者治疗方案选择尤为重要。

       Shim等[2]使用IVIM技术对三种脑肿瘤进行鉴别,结果发现ADC和f值可以有效识别PCNSL和另外两种脑肿瘤,而D值无法准确鉴别三种脑肿瘤。Yamashita等[3]和Suh等[4]也表明HGG的f值要明显高于PCNSL。组织学上HGG瘤侵袭性程度高,大量的新生血管及血脑屏障的破坏导致肿瘤灌注增高,PCNSL无肿瘤新生血管表达,故f值低。而PCNSL因肿瘤细胞排列较HGG密集导致水分子扩散受限,故ADC值低。国内学者宋双双等[5]发现脑转移瘤实质及瘤周水肿区D*和f值与HGG明显不同,这是因为脑转移瘤肿瘤细胞并不向周围浸润性生长,故其水肿区无明显的肿瘤细胞浸润。虽然IVIM鉴别脑肿瘤具有一定的参考价值,但仍需要进行大样本的研究来验证其对脑肿瘤的鉴别效能。

2.2 IVIM评估脑肿瘤级别

       脑胶质瘤级别分为HGG和低级别胶质瘤(low-grade glioma,LGG),不同级别的肿瘤有不同的生物学行为,患者的治疗方案及预后情况与脑胶质瘤级别密切相关。Bisdas等[6]最早将IVIM应用于评估脑胶质瘤级别。研究表明HGG的f值高于LGG,D值低于LGG。理论上,HGG肿瘤细胞密度大、细胞间隙小、新生血管丰富、肿瘤血供及血流量高,导致脑胶质瘤中水分子扩散运动受限和灌注增高,表现为D值降低和f值增高[7, 8, 9, 10, 11, 12, 13, 14, 15]。有学者研究证实肿瘤f值与脑灌注参数相关,该值可作为评估脑胶质瘤血管情况的可靠成像指标之一[16],还有学者报道HGG的f值低于LGG,这可能与样本选择差异有关[14,17]。关于D*参数,研究[8]认为D*的信噪比低,可重复性差,D*容易受到肿瘤内微血管密度影响,微血管的长度和血流速度都可以引起D*改变[18],因此,D*值无法准确评估脑胶质瘤级别。而Wang等[11]研究中表明D、D*和f值均可以有效鉴别HGG和LGG,其AUC分别为0.898、0.770、0.838。因此,IVIM有望为术前无创评估脑胶质瘤级别提供额外的指导信息。

       脑膜瘤发病率高,病理上分为Ⅰ~Ⅲ级,术前准确预测其分级利于指导患者选择最佳治疗方案,对患者预后意义重大。Lu等[19]研究中发现D、D*和f值均可以较好地预测脑膜瘤级别,D值具有最高的诊断效能,其诊断脑膜瘤级别的AUC、敏感度、特异度分别为0.83、90.3%、76.7%。Zampini等[20]和Bohara等[21]探讨良、恶性脑膜瘤IVIM各参数直方图信息与脑膜瘤级别的关系,结果发现D和f直方图信息可以有效鉴别肿瘤级别。病理上,恶性脑膜瘤有丝分裂程度高,肿瘤新生血管活跃,核质比高,肿瘤细胞密度高,这导致正常神经结构破坏严重和细胞内外间隙减小,导致脑膜瘤组成成分复杂,水分子扩散运动受限,微循环灌注增高。因此,IVIM一定程度上可以反映脑膜瘤的生物学行为,为患者临床的诊疗提供有益帮助。

2.3 IVIM评估脑胶质瘤基因型及预后

       新版WHO中枢神经系统肿瘤分类中,基因型作为脑胶质瘤的诊疗指南出现,其中有异柠檬酸脱氢酶(isocitrate dehydrogenase,IDH)和O6-甲基鸟嘌呤-DNA甲基转移酶(O6-methylguanine-DNA methyltransferase,MGMT)基因等。肿瘤影像学表现一定程度上受到基因调控,在临床工作中,往往需要通过手术切除获取病理组织进行基因检测,故有研究使用影像学方法无创评估脑胶质瘤基因状态。

       研究[22]证实脑胶质瘤伴IDH突变的患者其预后明显优于IDH野生型患者。Wang等[11]回顾性分析发现IDH突变型HGG和LGG中肿瘤ADC值明显高于IDH野生型同级别肿瘤。此外,IDH突变型HGG具有较低的D*和f值,这也证明了IDH突变导致肿瘤细胞增殖相对不活跃,新生血管相对减少。有研究[23]也表明IVIM可以有效识别IDH状态,其中f值AUC达0.81。吴诗熳等[24]利用先进的影像组学技术,从D参数图最终筛选了七个影像特征并建立预测模型,实现了对WHO Ⅱ级胶质瘤IDH突变的预测,其AUC为0.772。因此,IVIM技术可以用来术前评估脑胶质瘤IDH基因状态。

       MGMT基因调控MGMT蛋白的生成,当MGMT启动子发生甲基化时,MGMT蛋白产生变少,抑制对DNA烷基化损伤的修复,从而增加患者对烷基化药物的敏感性[25]。国内学者田博闻等[26]表明IVIM预测脑胶质瘤MGMT基因具有一定价值,甲基化组肿瘤较非甲基化组具有较高的rD、rf值和较低的rD*值。目前,仅有一篇用IVIM评估脑胶质瘤MGMT基因状态的研究,将来需要进行更深入的研究进行验证。

       Ki-67是肿瘤细胞核抗原,反映肿瘤细胞增殖情况,是脑胶质瘤重要的分子标志物之一,Ki-67表达水平与脑胶质瘤恶性程度呈正比,Ki-67表达水平越高,患者预后越差。研究[27, 28]分析发现Ki-67表达与肿瘤D和f值呈中度负相关。因此,使用IVIM技术评估脑胶质瘤Ki-67表达水平有助于了解肿瘤的恶性程度。

       在脑胶质瘤的预后评估中,脑胶质瘤复发经常与治疗后反应从影像学上难以鉴别,治疗后反应包括假性进展或放射性损伤,两者影像学表现为脑胶质瘤放化疗后的异常强化。Kim等[29]表明IVIM直方图信息可以鉴别脑胶质瘤复发与治疗后反应。Miyoshi等[30]和廖旦等[31]发现脑胶质瘤复发组具有较低D 值和较高D*、f值,这表明脑胶质瘤复发时,大量新生血管形成,导致灌注增高,复发时肿瘤细胞增殖能力强,细胞数目增多、密度增大使D值减小。还有学者[32, 33, 34]表明IVIM可用于评估脑胶质瘤的生存期,f值可能是患者生存期的预测因子,这表明肿瘤微血管生成信息会提示患者预后情况,由此可推测IVIM在评估脑胶质瘤预后方面也存在一定价值。

3 IVIM的不足与展望

       虽然IVIM较常规DWI显示出其独特的优势,但IVIM在脑肿瘤中应用主要存在以下问题。(1)研究中b值数量及范围大小选取未达统一标准;(2)正常脑实质及肿瘤组织的f值会受到脑脊液的影响,年龄及脑血流量差异也会导致脑组织D*值改变;(3)感兴趣区的选择存在主观因素。

       IVIM在脑肿瘤鉴别诊断及预后的研究目前较少,这可能成为将来的研究思路,此外,吴诗熳等[24]研究表明,IVIM联合影像组学技术实现了对脑胶质瘤IDH状态的评估,因此,IVIM联合影像组学的方法值得应用于脑肿瘤其他方面。在另一项研究[35]中表明7.0 T磁共振下IVIM将更有利于了解脑组织的微观结构变化,对疾病认识具有潜在的临床意义。

4 总结

       IVIM无需外源性对比剂便可无创量化脑肿瘤的扩散和灌注信息,对了解脑肿瘤生物学行为提供重要指导,因此,IVIM在脑肿瘤的分级、鉴别诊断及脑胶质瘤预后评估中意义重大。随着相关标准的制定及更深入的研究,该技术定会提高对脑肿瘤的进一步认识,切实解决临床问题,为脑肿瘤诊疗提供更广阔的前景。

1
Le Bihan D, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology, 1986,161(2): 401-407. DOI: 10.1148/radiology.161.2.3763909
2
Shim WH, Kim HS, Choi CG, et al. Comparison of apparent diffusion coefficient and intravoxel incoherent motion for differentiating among glioblastoma, metastasis, and lymphoma focusing on diffusion-related parameter. PloS One, 2015, 10(7): e0134761. DOI: 10.1371/journal.pone.0134761
3
Yamashita K, Hiwatashi A, Togao O, et al. Diagnostic utility of intravoxel incoherent motion mr imaging in differentiating primary central nervous system lymphoma from glioblastoma multiforme. J Mag Reson Imaging, 2016, 44(5): 1256-1261. DOI: 10.1002/jmri.25261
4
Suh CH, Kim HS, Lee SS, et al. Atypical imaging features of primary central nervous system lymphoma that mimics glioblastoma: utility of intravoxel incoherent motion MR imaging. Radiology, 2014, 272(2): 504-513. DOI: 10.1148/radiol.14131895
5
宋双双, 赵继平, 马敏阁,等. 体素内不相干运动DWI鉴别诊断高级别胶质瘤与脑转移瘤. 中国医学影像技术, 2018, 34(6): 826-830. DOI: 10.13929/j.1003-3289.201709136
Song SS, Zhao JP, Ma MG, et al. Intravoxel incoherent motion DWI in differential diagnosis of high-grade gliomas and metastasis. Chin J Med Imaging Technol, 2018, 34(6): 826-830. DOI: 10.13929/j.1003-3289.201709136
6
Bisdas S, Koh TS, Roder C, et al. Intravoxel incoherent motion diffusion-weighted MR imaging of gliomas: feasibility of the method and initial results. Neuroradiology, 2013, 55(10): 1189-1196. DOI: 10.1007/s00234-013-1229-7
7
Catanese A, Malacario F, Cirillo L, et al. Application of intravoxel incoherent motion (IVIM) magnetic resonance imaging in the evaluation of primitive brain tumours. Neuroradiology J, 2018, 31(1): 4-9. DOI: 10.1177/1971400917693025
8
Federau C, Meuli R, O'brien K, et al. Perfusion measurement in brain gliomas with intravoxel incoherent motion MRI. AJNR Am J Neuroradiology, 2014, 35(2): 256-262. DOI: 10.3174/ajnr.A3686
9
Shen N, Zhao L, Jiang J, et al. Intravoxel incoherent motion diffusion-weighted imaging analysis of diffusion and microperfusion in grading gliomas and comparison with arterial spin labeling for evaluation of tumor perfusion. J Magn Reson Imaging, 2016, 44(3): 620-632. DOI: 10.1002/jmri.25191
10
Hino T, Togao O, Hiwatashi A, et al. Clinical efficacy of simplified intravoxel incoherent motion imaging using three b-values for differentiating high- and low-grade gliomas. PloS One, 2018, 13(12): e0209796. DOI: 10.1371/journal.pone.0209796
11
Wang X, Chen XZ, Shi L, et al. Glioma grading and IDH1 mutational status: assessment by intravoxel incoherent motion MRI. Clin Radiol, 2019, 74(8): 651.e7-651.e14. DOI: 10.1016/j.crad.2019.03.020
12
Togao O, Hiwatashi A, Yamashita K, et al. Differentiation of high-grade and low-grade diffuse gliomas by intravoxel incoherent motion MR imaging. Neuro Oncol, 2016, 18(1): 132-141. DOI: 10.1093/neuonc/nov147
13
Yan LF, Sun YZ, Zhao SS, et al. Perfusion, diffusion, or brain tumor barrier integrity: which represents the glioma features best?Cancer Manag Res, 2019, 11: 9989-10000. DOI: 10.2147/CMAR.S197839
14
Zou T, Yu H, Jiang C, et al. Differentiating the histologic grades of gliomas preoperatively using amide proton transfer-weighted (APTW) and intravoxel incoherent motion MRI. NMR Biomed, 2018, 31(1): 3850. DOI: 10.1002/nbm.3850
15
Cao M, Suo S, Han X, et al. Application of a simplified method for estimating perfusion derived from diffusion-weighted MR imaging in glioma grading. Front Aging Neurosci, 2017, 9: 432. DOI: 10.3389/fnagi.2017.00432
16
Wu WC, Chen YF, Tseng HM, et al. Caveat of measuring perfusion indexes using intravoxel incoherent motion magnetic resonance imaging in the human brain. Eur Radiol, 2015, 25(8): 2485-2492. DOI: 10.1007/s00330-015-3655-x
17
Bai Y, Lin Y, Tian J, et al. Grading of gliomas by using monoexponential, biexponential, and stretched exponential diffusion-weighted MR imaging and diffusion kurtosis MR imaging. Radiology, 2016, 278(2): 496-504. DOI: 10.1148/radiol.2015142173
18
Luciani A, Vignaud A, Cavet M, et al. Liver cirrhosis: intravoxel incoherent motion MR imaging: pilot study. Radiology, 2008, 249(3): 891-899. DOI: 10.1148/radiol.2493080080
19
Lu YP, Shek KW, Wen JB, et al. Evaluation parameters between intra-voxel incoherent motion and diffusion-weighted imaging in grading and differentiating histological subtypes of meningioma: a prospective pilot study. J Neurol Sci, 2017, 372: 60-69. DOI: 10.1016/j.jns.2016.11.037
20
Zampini MA, Buizza G, Paganelli C, et al. Perfusion and diffusion in meningioma tumors: a preliminary multiparametric analysis with dynamic susceptibility contrast and intravoxel incoherent motion MRI. Magn Reson Imaging, 2020, 67: 69-78. DOI: 10.1016/j.mri.2019.12.003
21
Bohara M, Nakajo M, Kamimura K, et al. Histological grade of meningioma: prediction by intravoxel incoherent motion histogram parameters. Acad Radiol, 2020, 27(3): 342-353. DOI: 10.1016/j.acra.2019.04.012
22
Liu YQ, Chai RC, Wang YZ, et al. Amino acid metabolism-related gene expression-based risk signature can better predict overall survival for glioma. Cancer Sci, 2019, 110(1): 321-333. DOI: 10.1111/cas.13878
23
Wang X, Cao M, Chen H, et al. Simplified perfusion fraction from diffusion-weighted imaging in preoperative prediction of IDH1 mutation in WHO grade II-III gliomas: comparison with dynamic contrast-enhanced and intravoxel incoherent motion MRI. Radiol Oncol, 2020, 54(3): 301-310. DOI: 10.2478/raon-2020-0037
24
吴诗熳, 邱天明, 杨鸣, 等. 磁共振非高斯弥散加权成像预测低级别胶质瘤IDH1基因突变初步结果. 中国医学计算机成像杂志, 2018, 24(5): 410-416. DOI: 10.19627/j.cnki.cn31-1700/th.2018.05.010
Wu SM, Qiu TM, Yang M, et al. Primary application of non-gaussian diffusion MRI in predicting IDH1 mutation in low-grade gliomas. Chin Comput Med Imag, 2018, 24(5): 410-416. DOI: 10.19627/j.cnki.cn31-1700/th.2018.05.010
25
Smits M, van den Bent MJ. Imaging correlates of adult glioma genotypes. Radiology, 2017, 284(2): 316-331. DOI: 10.1148/radiol.2017151930
26
田博闻, 杨国强, 秦江波, 等. IVIM在预测高级别脑胶质瘤MGMT启动子甲基化状态的应用价值. 磁共振成像, 2020, 11(7): 506-510. DOI: 10.12015/issn.1674-8034.2020.07.006
Tian BW, Yang GQ, Qin JB, et al. Application value of IVIM in predicting MGMT promoter methylation status in high-grade gliomas. Chin J Magn Reson Imaging, 2020, 11(7): 506-510. DOI: 10.12015/issn.1674-8034.2020.07.006
27
Wang CC, Dong HB. Ki-67 labeling index and the grading of cerebral gliomas by using intravoxel incoherent motion diffusion-weighted imaging and three-dimensional arterial spin labeling magnetic resonance imaging. Acta Radiol, 2020, 61(8): 1057-1063. DOI: 10.1177/0284185119891694
28
Ren Y, Pang HP, Feng XY, et al. Non-gaussian diffusion MR imaging of glioma: comparisons of multiple diffusion parameters and correlation with histologic grade and MIB-1 (Ki-67 labeling) index. Neuroradiology, 2016, 58(2): 121-132. DOI: 10.1007/s00234-015-1606-5
29
Kim HS, Suh CH, Kim N, et al. Histogram analysis of intravoxel incoherent motion for differentiating recurrent tumor from treatment effect in patients with glioblastoma: initial clinical experience. AJNR Am J Neuroradiol, 2014, 35(3): 490-497. DOI: 10.3174/ajnr.A3719
30
Miyoshi F, Shinohara Y, Kambe A, et al. Utility of intravoxel incoherent motion magnetic resonance imaging and arterial spin labeling for recurrent glioma after bevacizumab treatment. Acta Radiol, 2018, 59(11): 1372-1379. DOI: 10.1177/0284185118759707
31
廖旦, 刘远成, 唐斌, 等. 对比单指数、双指数及拉伸指数DWI鉴别诊断胶质母细胞瘤术后复发与假性进展. 中国医学影像技术, 2019, 35(10): 1450-1455. DOI: 10.13929/j.1003-3289.201903059
Liao D, Liu YC, Tang B, et al. Comparison of DWI based on monoexponential, biexponential and stretched-exponential models in differentiating tumor recurrence and pseudoprogression of glioblastoma. Chin J Med Imaging Technol, 2019, 35(10): 1450-1455. DOI: 10.13929/j.1003-3289.201903059
32
Puig J, Sánchez-González J, Blasco G, et al. Intravoxel incoherent motion metrics as potential biomarkers for survival in glioblastoma. PloS One, 2016,11(7):e0158887. DOI: 10.1371/journal.pone.0158887
33
Federau C, Cerny M, Roux M, et al. IVIM perfusion fraction is prognostic for survival in brain glioma. Clin Neuroradiol, 2017, 27(4): 485-492. DOI: 10.1007/s00062-016-0510-7
34
Zhu LN, Wu J, Zhang H, et al. The value of intravoxel incoherent motion imaging in predicting the survival of patients with astrocytoma. Acta Radiol, 2020, 284185120926907. DOI: 10.1177/0284185120926907
35
Maximov II, Vellmer S. Isotropically weighted intravoxel incoherent motion brain imaging at 7T. Magn Reson Imaging, 2019, 57: 124-132. DOI: 10.1016/j.mri.2018.11.007

上一篇 肝脏原发黏膜相关淋巴组织结外边缘区淋巴瘤一例
下一篇 脑胶质瘤治疗后假性进展与复发的影像学鉴别研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2