分享:
分享到微信朋友圈
X
基础研究
磁共振3D DANTE CUBE序列对动脉管壁的定量评估:与病理比较的实验研究
赵海燕 陈玉坤 陈录广 蒋慧 陈士跃 李帅 彭雯佳 陆建平

Cite this article as: Zhao HY, Chen YK, Chen LG, et al. Quantitative assessment of arterial wall by magnetic resonance 3D DANTE CUBE sequence: An experimental study compared with pathology[J]. Chin J Magn Reson Imaging, 2022, 13(12): 111-116, 123.本文引用格式:赵海燕, 陈玉坤, 陈录广, 等. 磁共振3D DANTE CUBE序列对动脉管壁的定量评估:与病理比较的实验研究[J]. 磁共振成像, 2022, 13(12): 111-116, 123. DOI:10.12015/issn.1674-8034.2022.12.019.


[摘要] 目的 定量评价基于延迟交变章动调整激发(delay alternating with nutation for tailored excitation, DANTE)预脉冲3D CUBE磁共振序列对动脉管壁成像与病理结果的一致性。材料与方法 采用高脂饲料喂养加腹主动脉内膜拉伤手术制作12只新西兰大白兔的动脉粥样硬化模型,同期普通饲料喂养8只作为对照组。运用3.0 T 磁共振扫描仪对腹主动脉行冠状位黑血DANTE预备的CUBE容积扫描,包括T1WI和T2WI序列,而后行病理HE染色及高清数字化扫描。对磁共振图像进行横轴位重建,测量磁共振和病理图像管腔面积(lumen area, LA)、血管总面积(total area, TA),计算管壁面积(wall area, WA),WA=TA-LA,以及计算标准化管壁指数(normalized wall index, NWI),NWI=WA/TA。T1WI和T2WI的NWI分别用NWIT1和NWIT2表示。根据病理图片勾画血管壁外膜内边缘和外膜外边缘,相应的NWI分别用NWIP1和NWIP2表示。比较影像和病理定量指标在实验组与对照组之间的差异,并采用组内相关系数(intraclass correlation coefficient, ICC)、Bland-Altman plots评估磁共振序列之间、磁共振与病理之间的NWI一致性。结果 最终19只兔(实验组1只磁共振成像检查前死亡)纳入统计。与对照组相比,实验组的LA明显较小(T1WI,P=0.033;T2WI,P<0.0001)、NWI明显较大(T1WI,P<0.0001;T2WI,P<0.0001)。整体一致性分析发现,NWIT1和NWIT2之间的一致性较好(ICC=0.7552),NWIT1或NWIT2与NWIP1的一致性次之(ICC=0.438;ICC=0.444),NWIT1或NWIT2与NWIP2的一致性最差(ICC=0.285;ICC=0.292)。实验组的一致性分析与上述结果类似。对照组中,NWIT1和NWIT2之间的一致性也较好(ICC=0.6304),但NWIT1或NWIT2与NWIP1的一致性较差(ICC=-0.1917;ICC=-0.05949),NWIT1或NWIT2与NWIP2的一致性也较差(ICC=-0.1989;ICC=-0.1441)。结论 3D DANTE CUBE的T1WI和T2WI可以量化区分兔腹主动脉粥样硬化病变管壁与正常管壁,且这两个常用加权序列之间的一致性较好。根据与病理的一致性分析,DANTE CUBE序列测量的NWI相对接近病理图像中血管外膜内边缘测量的结果,但总体而言一致性欠佳,在管壁菲薄的正常血管比较中尤甚。
[Abstract] Objective To quantitatively evaluate the consistency of arterial wall imaging and pathological results based on DANTE prepulse 3D CUBE magnetic resonance sequence.Materials and Methods Twelve New Zealand white rabbits were fed high-fat diet plus abdominal aortic strain surgery to establish atherosclerosis model, and 8 rabbits were fed ordinary diet as control group. The abdominal aorta was scanned with coronal black-blood DANTE CUBE T1WI and T2WI sequences using 3.0 T MRI system, followed by pathological HE staining. The MRI images were reconstructed in the horizontal axis, and lumen area (LA) and total area (TA) were measured in MRI and pathological images. The wall area (WA) was calculated, WA=TA-LA, and the normalized wall index (NWI) was calculated, NWI=WA/TA. The NWI of T1WI and T2WI are denoted by NWIT1 and NWIT2, respectively. The inner edge and outer edge of the adventitial of the vessel wall were delineated according to the pathological images, and the corresponding NWI were denoted by NWIP1 and NWIP2, respectively. The differences of MR imaging and pathological quantitative indexes between the experimental group and the control group were compared, and the NWI consistency between MRI sequences and between MRI and pathology were evaluated by intraclass correlation coefficient (ICC) and Bland-Altman plots.Results Finally, 19 rabbits (1 died before MRI examination in the experimental group) were included in the statistics. Compared with the control group, the LA of the experimental group was significantly smaller (T1WI, P=0.033; T2WI, P<0.0001) and NWI were significantly larger (T1WI, P<0.0001; T2WI, P<0.0001). The overall consistency analysis showed that the consistency between NWIT1 and NWIT2 was better (ICC=0.7552), followed by the consistency between NWIT1 or NWIT2 and NWIP1 (ICC=0.438; ICC=0.444), NWIT1 or NWIT2 had the worst agreement with NWIP2 (ICC=0.285; ICC=0.292). The consistency analysis of the experimental group was similar to the above results. In the control group, the agreement between NWIT1 and NWIT2 was acceptable (ICC=0.6304), but the agreement between NWIT1 or NWIT2 and NWIP1 was poor (ICC=-0.1917; ICC=-0.05949), the consistency of NWIT1 or NWIT2 with NWIP2 was also poor (ICC=-0.1989; ICC=-0.1441).Conclusions The T1WI and T2WI of 3D DANTE CUBE can quantitatively distinguish the wall of atherosclerotic lesions from the normal wall of abdominal aorta in rabbits, and the consistency between the two commonly used weighted sequences is good. According to the consistency analysis between the NWI and pathology, the NWI measured by DANTE CUBE sequence is relatively close to the measurement results of the inner edge of the adventitia in pathological images, but the consistency is poor in general, especially in the comparison of normal vessels with thin vessel walls.
[关键词] 磁共振成像;血管壁;动脉粥样硬化;兔;斑块;黑血成像;延迟交变章动调整激发
[Keywords] magnetic resonance imaging;vessel wall;atherosclerosis;rabbit;plaque;black blood imaging;delay alternating with nutation for tailored excitation

赵海燕 1   陈玉坤 1   陈录广 1   蒋慧 2   陈士跃 1   李帅 1   彭雯佳 1*   陆建平 1  

1 中国人民解放军海军军医大学第一附属医院放射诊断科,上海 200433

2 中国人民解放军海军军医大学第一附属医院病理科,上海 200433

彭雯佳,E-mail:cindywpj@aliyun.com

作者利益冲突声明:全体作者均声明无利益冲突。


基金项目: 上海市自然科学基金 22ZR1478100,20ZR1456300 上海市科委医学创新研究专项项目 22Y11911200
收稿日期:2022-08-25
接受日期:2022-11-29
中图分类号:R445.2  R-332 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2022.12.019
本文引用格式:赵海燕, 陈玉坤, 陈录广, 等. 磁共振3D DANTE CUBE序列对动脉管壁的定量评估:与病理比较的实验研究[J]. 磁共振成像, 2022, 13(12): 111-116, 123. DOI:10.12015/issn.1674-8034.2022.12.019.

       在世界范围内,脑卒中是主要致死和首要致残病因[1, 2, 3]。在我国脑血管病所造成的经济和社会负担更为严重,每年直接治疗支出为680亿人民币[2]。在脑血管病亚型中,近70%的患者为缺血性脑卒中[4, 5],其中临床最常见的责任病变是头颈部大动脉粥样硬化[6, 7, 8]。作为传统血管造影技术,如CT血管造影(CT angiography, CTA)、磁共振血管造影(magnetic resonance angiography, MRA)或数字减影血管造影(digital subtraction angiography, DSA)的重要补充,磁共振管壁成像(magnetic resonance vessel wall imaging, MR-VWI)越来越广泛地应用于脑血管病的诊断和随访[9, 10, 11, 12]。MR-VWI可以很好地定性和定量评价血管腔、管壁及其病变情况,直观评估动脉粥样硬化斑块的形态、成分、斑块负荷和稳定性等。

       近年来,各种3D MR-VWI成像序列也被逐渐开发和应用[13, 14, 15, 16, 17]。3D管壁成像实现了各向同性高空间分辨率、高信噪比、大覆盖范围的管壁成像,克服了2D技术扫描速度慢、覆盖范围小等缺点,例如头颈联合扫描可以一次成像将头颈部的动脉管壁完整且连续地呈现,也可提供T1、T2和重T1等多对比加权图像[18],无疑将提高脑血管病的病因探查效率。可变翻转角快速自旋回波序列(通用医疗称为CUBE序列)是目前临床应用较广的3D管壁成像序列。另外,血流抑制技术与3D MR-VWI联合可进一步增强管壁病变的对比噪声比[19],近年来一种新兴的3D黑血预脉冲序列——延迟交变章动调整激发(delay alternating with nutation for tailored excitation, DANTE)技术被应用于动脉管壁成像。Sannananja等[20]研究表明与T1-SPACE相比,血流抑制增强T1-DANTE-SPACE具有较好的信噪比和血液抑制效果、较高的图像质量和较少的图像伪影。然而,DANTE预备序列与3D管壁成像序列联合在对动脉粥样硬化评估的准确性等方面还有待全面和严格的验证。本研究以兔动脉粥样硬化的腹主动脉为研究对象,评价DANTE黑血预脉冲结合CUBE序列对动脉管壁定量评估的可靠性,探索该序列量化评价动脉粥样硬化斑块的实验依据,为将来的临床推广提供参考。

1 材料与方法

1.1 实验动物

       本研究经过上海长海医院伦理委员会批准(批准编号:CHEC2018-092)。海军军医大学实验动物中心提供纯种成年新西兰大白兔20只(雄:雌=1∶1),体质量2.5~3.4 kg/只,每只单笼饲养,基础饲料适应性喂养两周后随机分为2组,实验组12只,对照组8只。实验组高脂饲料(兔维持饲料79.5%,猪油5%,蛋黄粉15%,胆固醇0.5%)喂养,自由饮水,4周后经股动脉穿刺行球囊拉伤腹主动脉内膜手术[21, 22],术后继续高脂饲料喂养。对照组始终基础饲料喂养,控制食量,自由饮水。第12周检测所有实验动物的血脂含量。

1.2 磁共振扫描

       兔在磁共振检查前禁食12 h、禁水4 h,扫描过程中采用MRI兼容的动物麻醉机(MSS-3S,上海任谊生物科技有限公司)吸入式麻醉(异氟烷,浓度1.5%~2.0%,流量0.5 L/min)。运用3.0 T磁共振扫描仪(Discovery MR750,GE Healthcare,Milwaukee,美国)和原机自带的32通道腹部线圈覆盖躯干成像,俯卧位、尾先进。扫描序列是冠状位的3D DANTE CUBE T1WI和T2WI,扫描范围从膈肌至腹股沟下缘,成像中心为腹主动脉,层厚1.2 mm,层间距0.6 mm,FOV 200 mm×200 mm,矩阵256×256。其中T1WI的TR 1100.0 ms,TE 12.9 ms,层数92,扫描时间8 min 22 s;T2WI的TR 2000.0 ms,TE 58.6 ms,层数 84,扫描时间5 min 51 s。

1.3 病理检查

       磁共振扫描后将兔处死(10% KCl溶液1 mL/kg耳缘静脉注射),解剖分离出腹主动脉,生理盐水冲洗干净血凝块,将标本固定于10%中性甲醛水溶液,脱钙、整体包埋于石蜡中,连续切片(间距1 mm,层厚10 μm),以右肾动脉开口为原点向两侧依次编号(右肾动脉开口正中层面为0,近心端为负数,远心端为正数),行HE染色。

1.4 图像测量

       利用RadiAnt DICOM Viewer(4.2.1, Medixant, 波兰)软件进行磁共振图像测量,首先在冠状位3D DANTE CUBE原始图像中观察腹主动脉管壁情况,然后进行横轴位薄层重建(重建层厚0.8 mm)。如果腹主动脉管壁有增厚或动脉粥样硬化斑块形成,则选择管腔最狭窄处的层面进行测量;若管壁无增厚,则选择右肾动脉开口处远心端第一层进行测量。手动勾画管腔轮廓,软件可获得管腔面积(lumen area, LA),勾画管壁轮廓可获得血管总面积(total area, TA)(图1A1D);由此计算管壁面积(wall area, WA)和标准化管壁指数(normalized wall index, NWI):WA=TA-LA,NWI=WA/TA。根据DANTE CUBE T1WI和T2WI计算的标准化管壁指数分别用NWIT1和NWIT2表示。上述MRI测量由一名有13年影像诊断经验的副主任医师完成。

       利用病理切片扫描仪NanoZoomer S360(C13220-01,滨松,日本)将玻璃切片在40倍放大模式下转化为高分辨率的数字切片图像,然后在Aperio ImageScope(v12.3.2.8013,Leica Biosystems,美国)软件中进行图像判读及测量。与磁共振图像测量的原则一致,如果腹主动脉管壁有增厚或斑块,则选择管腔最狭窄处的切片进行测量;若管壁无增厚,则选择右肾动脉开口处远心端第一张切片进行测量。手动勾画管腔轮廓,软件可获得LA。管壁轮廓的勾画采用两种方法:勾画血管壁外膜内边缘,获得的血管总面积表示为TAP1;勾画血管壁外膜外边缘,获得的血管总面积表示为TAP2(图1E);分别计算获得相应的标准化管壁指数分别用NWIP1和NWIP2表示。上述MRI测量由一名高年资的病理科医生完成。

图1  实验组兔的腹主动脉3D DANTE CUBE图像及病理对照。1A和1B:冠状位DANTE CUBE T1WI原始图像及其横轴位重建图像;1C和1D:冠状位DANTE CUBE T2WI原始图像及其横轴位重建图像;1A和1C中水平黄线分别代表1B和1D横轴位的重建位置,在1B和1D中手动勾画管腔轮廓(绿圈)和管壁轮廓(红圈),图像软件可分别获得管腔面积(标识在血管下方)和血管总面积(标识在血管上方);1E:兔的腹主动脉病理图像(HE染色,20倍),手动勾画管腔轮廓(1号箭头)、管壁外膜内边缘(2号箭头)和外膜外边缘(3号箭头),图像软件可分别获得相应的面积(标识在图像左下角)。
Fig. 1  3D DANTE CUBE images of abdominal aorta of experimental group of rabbits and pathological image. 1A and 1B: Coronal DANTE CUBE T1WI original image and its transverse axis reconstruction image; 1C and 1D: The original T2WI images of DANTE CUBE in the coronal view and the reconstructed images in the transverse axis. The horizontal yellow lines in 1A and 1C represent the reconstructed positions in the transverse axis of 1B and 1D, respectively. The lumen contour (green circle) and wall contour (red circle) were manually delineated in 1B and 1D. The image software can obtain the lumen area (marked below the vessel) and the total area of the vessel (marked above the vessel) respectively. 1E: Pathological image of the abdominal aorta of rabbits (HE staining, 20×). The lumen contour (arrow No. 1), inner edge of the adventitia (arrow No. 2) and outer edge of the adventitia (arrow No. 3) are manually delineated. The corresponding areas are obtained by image software (marked in the lower left corner of the image).

1.5 统计学方法

       所有数据统计分析采用SPSS(Version 22, IBM SPSS Statistics)和MedCalc(Version 18.2.1, MedCalc Software bvba)软件进行分析。定量数据采用中位数和四分位区间表示。实验组与对照组的血脂水平差异采用Mann-Whitney U检验分析。MR-VWI和病理形态学定量指标在实验组与对照组之间的差异采用Mann-Whitney U检验分析。采用组内相关系数(intraclass correlation coefficient, ICC)、Bland-Altman plots评估磁共振序列之间、磁共振表现与病理之间的NWI一致性。P<0.05表示差异具有统计学意义。

2 结果

2.1 血脂水平

       磁共振扫描前有1只实验组的新西兰大白兔死亡,其余11只实验组兔和8只对照组兔均顺利完成实验并纳入统计分析。实验组兔的各项血脂指标均明显大于对照组(P<0.05),具体内容见表1

表1  实验组和对照组兔的血脂水平比较
Tab. 1  Comparison of serum lipid levels between experimental group and control group

2.2 管壁形态学指标的定量评估

       在DANTE CUBE T1WI和T2WI的横轴位重建图像中测量并计算管壁形态学指标LA、WA及NWI。与对照组相比,无论T1WI或T2WI,实验组的LA较小、NWI较大,差异具有统计学意义(P<0.05);实验组的WA较大,差异无统计学意义(P>0.05)。另外,根据数字化病理图片的计算结果也发现实验组的NWIP1和NWIP2均明显大于对照组(P<0.05)。具体内容见表2

表2  实验组和对照组的MRI序列及病理的主要管壁形态学参数比较
Tab. 2  Comparison of MRI sequences and main wall morphological parameters of pathology between experimental group and control group

2.3 标准化管壁指数的一致性

       MRI两个序列之间、MRI与病理之间的NWI一致性分析,整体而言,NWIT1和NWIT2之间的一致性较好(ICC=0.7552),NWIT1或NWIT2与NWIP1的一致性次之(ICC=0.438或ICC=0.444),NWIT1或NWIT2与NWIP2的一致性最差(ICC=0.285或ICC=0.292),具体内容见表3图2。实验组的一致性分析与上述结果类似,NWIT1和NWIT2之间的一致性较好(ICC=0.6056),NWIT1或NWIT2与NWIP1的一致性次之(ICC=0.4123或ICC=0.3409),NWIT1或NWIT2与NWIP2的一致性最差(ICC=0.1941或ICC=0.07998),详见表4。对照组中,NWIT1和NWIT2之间的一致性较好(ICC=0.6304),NWIT1或NWIT2与NWIP1的一致性较差(ICC=-0.1917或ICC=-0.05949),NWIT1或NWIT2与NWIP2的一致性也较差(ICC=-0.1989或ICC=-0.1441),详见表5

图2  DANTE CUBE T1WI、T2WI及病理的标准化管壁指数之间的Bland-Altman plots图。2A:T1WI和T2WI的NWI之间的一致性;2B和2C:T1WI的NWI和病理图像中根据管壁外膜内边缘或外膜外边缘计算的NWI之间的一致性;2D和2E:T2WI的NWI和病理图像中根据管壁外膜内边缘或外膜外边缘计算的NWI之间的一致性。DANTE:延迟交变章动调整激发;NWI:标准化管壁指数。
Fig. 2  Bland-Altman plots between DANTE CUBE T1WI, T2WI and pathological normalized wall index. 2A: The consistency between NWI of T1WI and T2WI; 2B and 2C: The consistency between the NWI of T1WI and the NWI calculated according to the inner edge or outer edge of the adventitia in the pathological images; 2D and 2E: The consistency between the NWI of T2WI and the NWI calculated according to the inner edge or outer edge of the adventitia in the pathological images. DANTE: delay alternating with nutation for tailored excitation; NWI: normalized wall index.
表3  整体NWI在DANTE CUBE T1WI和T2WI之间及其与病理之间的一致性
Tab. 3  Consistency of global NWI between DANTE CUBE T1WI and T2WI and between the NWI and the pathology
表4  实验组NWI在DANTE CUBE T1WI和T2WI之间及其与病理之间的一致性
Tab. 4  Consistency of NWI between DANTE CUBE T1WI and T2WI and between NWI and pathology in the experimental group
表5  对照组NWI在DANTE CUBE T1WI和T2WI之间及其与病理之间的一致性
Tab. 5  Consistency of NWI between DANTE CUBE T1WI and T2WI and between NWI and pathology in control group

3 讨论

       本研究以兔腹主动脉管壁为研究对象,定量评价了3D DANTE CUBE黑血成像与病理结果的一致性,发现该管壁成像技术可以量化区分动脉粥样硬化管壁与正常管壁。然而,DANTE CUBE序列的标准化管壁指数与病理的一致性欠佳,尤其对于管壁菲薄的正常血管。

3.1 MR-VWI对病变管壁的量化研究

       管壁成像定量研究的前提在于获得高质量的成像图像和准确勾画管壁轮廓。随着人工智能技术的发展,有越来越多的医学影像研究利用计算机辅助的半自动或全自动勾画感兴趣区,包括勾画血管壁轮廓,但相关软件的勾画精度对于较纤细的血管仍有难度、需要人工审查和调整。目前,手动勾画管壁仍然是管壁成像定量研究的可靠方式,为了确保准确性,本研究的管壁勾画由一名从事血管影像研究十余年的放射科医生完成;在可重复性方面,笔者团队之前通过动物实验也验证了基于DANTE预脉冲的多对比CUBE序列重复扫描和重复测量的组内和组间一致性[21, 22];另外,为了勾画管壁时更加贴合轮廓,本研究采用了打点式的多边形工具,而非之前研究[21, 22]所采用的椭圆形工具。

       通常对动脉粥样硬化的诊断是利用超声、CTA、MRA以及DSA等活体影像技术发现管腔狭窄或管腔表面不光整。这些技术仅能揭示血管腔的异常,不能完全描述血管壁内的病变,比如在动脉粥样硬化的早期,血管腔通常能够代偿性扩张(正性重塑),以适应斑块的形成,而管腔无明显狭窄[23],血管造影很可能会低估病变程度。另外,病理学组织学研究表明狭窄程度相同的斑块之间存在相当大的差异,某些斑块特征与缺血事件的风险增加相关[24]。因此,将管腔狭窄度作为临床诊疗唯一的评价标准具有巨大的局限性。近25年来的研究表明,动脉粥样硬化斑块的形态和内部结构比单纯的管腔狭窄程度更能准确地评价病灶的稳定性[23]。经病理组织学证实,利用MR-VWI多对比序列能够对颈动脉斑块的形态和成分进行定性评估[18]。临床研究表明这些特征能有效地预测有症状或无症状患者的后续脑血管事件[25, 26, 27, 28]

       利用先进的MR-VWI方法可以识别管腔以外的病变和易损斑块,这一能力引发了一场积极的辩论,即是否需要改变范式,不再依赖于管腔狭窄程度来评估缺血性卒中的风险。Qiao等[23]通过大量人群证明MR-VWI在颅内动脉粥样硬化狭窄的评估中是一个可靠的工具。为了加快对动脉粥样硬化病变的管壁成像分析和治疗策略的评价,有必要通过合适的动物模型探测影像学的准确性和稳定性[29, 30]。本实验利用微创技术对兔腹主动脉内膜损伤配合高脂饲料喂养可在目标血管获得确切的动脉粥样硬化病变。本研究证明3D DANTE CUBE管壁成像T1WI和T2WI均可明确区分动脉粥样硬化管壁与正常管壁,且经病理组织检查印证;无论是否存在病变,标准化管壁指数(在有斑块的情况下相当于斑块负荷)在T1WI和T2WI中的一致性都较好。

3.2 管壁成像与病理比较的差异分析

       在与病理组织学的比较中,实验组管壁成像的标准化管壁指数(或斑块负荷)更接近于病理管壁外膜內边缘的计算值,而理论上标准化管壁指数应该根据外膜外边缘的测量值计算。笔者团队发现结构相对疏松的外膜形态变异较大,在病理切片制作过程中难免破坏其完整性,导致有时在病理图像中难以勾勒管壁外膜外边缘,因此才增加了对外膜内边缘的勾画。另外,对于管壁无病变的对照组,标准化管壁指数在MR-VWI与病理图像之间的一致性均不理想,说明本研究所运用的3D DANTE CUBE技术在定量测量菲薄的正常动脉管壁时仍面临挑战,分析原因可能包括:(1)本研究MR-VWI图像的空间分辨率有限。磁共振图像测量厚度等定量指标的准确性直接与其空间分辨率相关,空间分辨率有限的情况下可能对微小斑块或菲薄管壁的边界显示模糊,导致测量值较真实值有所夸大。(2)管壁成像图像和病理切片难以精准匹配。尽管本研究按照解剖改变挑选管腔最狭窄处的层面进行测量比较,但磁共振图像和病理切片的厚度不是一个数量级(前者是毫米,后者是微米)。(3)病理切片与活体状态的差别。血管的病理标本经过脱水等处理后管腔塌陷,并且可能伴有管壁褶皱或破坏等改变,其形态学固然与活体MR-VWI存在一定差异。在提高管壁成像的空间分辨率方面,有研究利用超高场强(7.0 T)的磁共振扫描仪将DANTE预脉冲模块与可变翻转快速获取弛豫增强(variable-flip-angle rapid acquisition with relaxation enhancement, VF-RARE)相结合(DANTE-VE-RARE)实现了对小鼠血管有效的血液信号抑制[31]

3.3 局限性

       本研究仍存在一些局限:(1)与病理的一致性比较中,考虑到影像与病理的层面匹配难度,本研究仅比较了一个定量参数NWI(仅需要选择最狭窄层面测量),没有测量狭窄率和重构指数等指标(还需要纳入正常管腔为参考)。(2)没有对动脉粥样硬化斑块本身进行定性和定量分析,如斑块成分如何、斑块面积体积的测量等。原因主要是动物模型产生的斑块较小,在MR-VWI图像中难以分辨斑块轮廓和成分等细节。今后笔者将对拟行颈动脉内膜剥脱术患者的颈动脉斑块进行进一步研究,以便在体积较大的症状性斑块中验证黑血管壁成像的准确性。在提升管壁成像的空间分辨率方面,可以采用更高场强的磁共振仪、更多通道的表面线圈或者更加优化的管壁成像序列等措施。

       综上所述,黑血DANTE预脉冲3D CUBE磁共振管壁成像可以量化区分兔腹主动脉粥样硬化病变管壁与正常管壁。根据标准化管壁指数一致性分析,DANTE CUB的T1WI和T2WI序列之间的一致性较好,而DANTE CUBE与病理的一致性欠佳,提示该技术在定量分析血管壁小病变或菲薄管壁时需要谨慎判断,为将来该技术运用于活体动脉粥样硬化斑块的量化研究提供了实验参考。

[1]
Libby P. The changing landscape of atherosclerosis[J]. Nature, 2021, 592(7855): 524-533. DOI: 10.1038/s41586-021-03392-8.
[2]
Chen WW, Gao RL, Liu LS, et al. China cardiovascular diseases report 2015: a summary[J]. J Geriatr Cardiol, 2017, 14(1): 1-10. DOI: 10.11909/j.issn.1671-5411.2017.01.012.
[3]
Saini V, Guada L, Yavagal DR. Global epidemiology of stroke and access to acute ischemic stroke interventions[J]. Neurology, 2021, 97(20Suppl 2): S6-S16. DOI: 10.1212/WNL.0000000000012781.
[4]
王陇德, 彭斌, 张鸿祺, 等. «中国脑卒中防治报告2020»概要[J]. 中国脑血管病杂志, 2022, 19(2): 136-144.
Wang LD, Peng B, Zhang HQ, et al. Brief report on stroke prevention and treatment in China[J]. Chin J Cerebrovasc Dis, 2022, 19(2): 136-144.
[5]
Feigin VL, Brainin M, Norrving B, et al. World stroke organization (WSO): global stroke fact sheet 2022[J]. Int J Stroke, 2022, 17(1): 18-29. DOI: 10.1177/17474930211065917.
[6]
Levy EI, Mocco J, Samuelson RM, et al. Optimal treatment of carotid artery disease[J]. J Am Coll Cardiol, 2008, 51(10): 979-985. DOI: 10.1016/j.jacc.2007.10.052.
[7]
李宝民, 缪中荣, 王拥军, 等. 症状性颅内动脉粥样硬化性狭窄血管内治疗中国专家共识2018[J]. 中国卒中杂志, 2018, 13(6): 594-604. DOI: 10.3969/j.issn.1673-5765.2018.06.012.
Li BM, Miao ZR, Wang YJ, et al. Chinese expert consensus on endovascular treatment for symptomatic intracranial atherosclerotic Stenosis 2018[J]. Chin J Stroke, 2018, 13(6): 594-604. DOI: 10.3969/j.issn.1673-5765.2018.06.012
[8]
Björkegren JLM, Lusis AJ. Atherosclerosis: recent developments[J]. Cell, 2022, 185(10): 1630-1645. DOI: 10.1016/j.cell.2022.04.004.
[9]
彭雯佳, 陆建平. 动脉粥样硬化管壁的多对比高分辨率MRI研究进展[J]. 中华放射学杂志, 2015, 49(8): 637-640. DOI: 10.3760/cma.j.issn.1005-1201.2015.08.025.
Peng WJ, Lu JP. Research progress of muti-contrast high resolution MRI in atherosclerotic vessel wall[J]. Chin J Radiol, 2015, 49(8): 637-640. DOI: 10.3760/cma.j.issn.1005-1201.2015.08.025.
[10]
李媛, 边洋, 刘建国, 等. 基于高分辨率磁共振成像的氯吡格雷和阿司匹林治疗症状性颅内动脉狭窄患者1年的疗效观察[J]. 中国卒中杂志, 2018, 13(8): 773-779. DOI: 10.3969/j.issn.1673-5765.2018.08.003.
Li Y, Bian Y, Liu JG, et al. 1-year efficacy observation of clopidogrel versus aspirin therapy for symptomatic intracranial artery Stenosis based on high-resolution magnetic resonance imaging[J]. Chin J Stroke, 2018, 13(8): 773-779. DOI: 10.3969/j.issn.1673-5765.2018.08.003.
[11]
Li FB, Wang YL, Hu TX, et al. Application and interpretation of vessel wall magnetic resonance imaging for intracranial atherosclerosis: a narrative review[J/OL]. Ann Transl Med, 2022, 10(12): 714 [2022-08-24]. https://usercontent.beijingbang.top/scholar?q=cache:8UK08DCRYrAJ:scholar.google.com/+Application+and+interpretation+of+vessel+wall+magnetic+resonance+imaging+for+intracranial+atherosclerosis:+a+narrative+review&hl=zh-CN&as_sdt=0,5. DOI: 10.21037/atm-22-2364.
[12]
Zhang N, Lyu J, Ren L, et al. Arterial culprit plaque characteristics revealed by magnetic resonance Vessel Wall imaging in patients with single or multiple infarcts[J]. Magn Reson Imaging, 2021, 84: 12-17. DOI: 10.1016/j.mri.2020.06.004.
[13]
Mandell DM, Mossa-Basha M, Qiao Y, et al. Vessel Wall Imaging Study Group of the American Society of Neuroradiology. Intracranial Vessel Wall MRI: Principles and Expert Consensus Recommendations of the American Society of Neuroradiology[J]. AJNR Am J Neuroradiol, 2017, 38(2): 218-229. DOI: 10.3174/ajnr.A4893.
[14]
Fushimi Y, Yoshida K, Okawa M, et al. Vessel wall MR imaging in neuroradiology[J]. Radiol Med, 2022, 127(9): 1032-1045. DOI: 10.1007/s11547-022-01528-y.
[15]
Mattay RR, Saucedo JF, Lehman VT, et al. Current clinical applications of intracranial vessel wall MR imaging[J]. Semin Ultrasound CT MR, 2021, 42(5): 463-473. DOI: 10.1053/j.sult.2021.07.004.
[16]
Mantzaris MD, Siogkas PK, Tsakanikas VD, et al. Computational modeling of atherosclerotic plaque progression in carotid lesions with moderate degree of stenosis[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2021, 2021: 4209-4212. DOI: 10.1109/EMBC46164.2021.9630376.
[17]
Guo Y, Canton G, Chen L, et al. Multi-planar, multi-contrast and multi-time point analysis tool (MOCHA) for intracranial vessel wall characterization[J]. J Magn Reson Imaging, 2022, 56(3): 944-955. DOI: 10.1002/jmri.28087.
[18]
Wei HY, Zhang MQ, Li YD, et al. Evaluation of 3D multi-contrast carotid vessel wall MRI: a comparative study[J]. Quant Imaging Med Surg, 2020, 10(1): 269-282. DOI: 10.21037/qims.2019.09.11.
[19]
李希茂, 陶黎, 蔡焰, 等. 颅内血管壁成像中MSDE序列的参数优化研究[J]. 磁共振成像, 2022, 13(7): 112-115, 125.
Li XM, Tao L, Cai Y, et al. Scanning parameters optimization of MSDE sequence for intracranial vascular wall imaging[J]. Chin J Magn Reson Imaging, 2022, 13(7): 112-115, 125.
[20]
Sannananja B, Zhu C, Colip CG, et al. Image-quality assessment of 3D intracranial vessel wall MRI using DANTE or DANTE-CAIPI for blood suppression and imaging acceleration[J]. AJNR Am J Neuroradiol, 2022, 43(6): 837-843. DOI: 10.3174/ajnr.A7531.
[21]
陈士跃, 李帅, 彭雯佳, 等. 基于DANTE预脉冲3D CUBE磁共振成像对动脉粥样硬化管壁重复性测量的实验研究[J]. 中国CT和MRI杂志, 2021, 19(6): 1-3, 14. DOI: 10.3969/j.issn.1672-5131.2021.06.001.
Chen SY, Li S, Peng WJ, et al. Experimental study on repetitive measurement of atherosclerotic vessel wall based on DANTE prepulse 3D CUBE magnetic resonance imaging[J]. Chin J CT MRI, 2021, 19(6): 1-3, 14. DOI: 10.3969/j.issn.1672-5131.2021.06.001.
[22]
常乐, 陈录广, 彭雯佳, 等. 黑血3D DANTE-CUBE磁共振管壁成像技术对动脉粥样硬化血管重复扫描的实验研究[J]. 中国医学计算机成像杂志, 2020, 26(2): 176-181. DOI: 10.19627/j.cnki.cn31-1700/th.2020.02.017.
Chang L, Chen LG, Peng WJ, et al. Experimental study on repeated scanning of atherosclerotic vessels by black blood 3D DANTE-CUBE magnetic resonance vessel wall imaging[J]. Chin Comput Med Imaging, 2020, 26(2): 176-181. DOI: 10.19627/j.cnki.cn31-1700/th.2020.02.017.
[23]
Qiao Y, Guallar E, Suri FK, et al. MR imaging measures of intracranial atherosclerosis in a population-based study[J]. Radiology, 2016, 280(3): 860-868. DOI: 10.1148/radiol.2016151124.
[24]
Saba L, Yuan C, Hatsukami TS, et al. Carotid artery wall imaging: perspective and guidelines from the ASNR vessel wall imaging study group and expert consensus recommendations of the American society of neuroradiology[J/OL]. AJNR Am J Neuroradiol, 2018, 39(2): E9-E31 [2022-08-24]. http://www.ajnr.org/content/39/2/E9.short. DOI: 10.3174/ajnr.A5488.
[25]
Altaf N, Daniels L, Morgan PS, et al. Detection of intraplaque hemorrhage by magnetic resonance imaging in symptomatic patients with mild to moderate carotid stenosis predicts recurrent neurological events[J]. J Vasc Surg, 2008, 47(2): 337-342. DOI: 10.1016/j.jvs.2007.09.064.
[26]
Singh N, Moody AR, Gladstone DJ, et al. Moderate carotid artery stenosis: MR imaging-depicted intraplaque hemorrhage predicts risk of cerebrovascular ischemic events in asymptomatic men[J]. Radiology, 2009, 252(2): 502-508. DOI: 10.1148/radiol.2522080792.
[27]
Tandon V, Senthilvelan S, Sreedharan SE, et al. High-resolution MR vessel wall imaging in determining the stroke aetiology and risk stratification in isolated middle cerebral artery disease[J]. Neuroradiology, 2022, 64(8): 1569-1577. DOI: 10.1007/s00234-021-02891-9.
[28]
Wan M, Yan L, Xu Z, et al. Symptomatic and asymptomatic chronic carotid artery occlusion on high-resolution MR vessel wall imaging[J]. AJNR Am J Neuroradiol, 2022, 43(1): 110-116. DOI: 10.3174/ajnr.A7365.
[29]
Zhang XH, Chen X, Liang Z, et al. Atorvastatin promotes macrocalcification, but not microcalcification in atherosclerotic rabbits: an 18F-NaF PET/CT study[J]. J Cardiovasc Pharmacol, 2021, 78(4): 544-550. DOI: 10.1097/FJC.0000000000001088.
[30]
Liu ZL, Gong MF, Zhao BX, et al. How to establish a minimal invasive and stable carotid artery Stenosis rabbit model? A simple and effective carotid artery balloon strain technique[J/OL]. Front Physiol, 2021, 12: 752716 [2022-08-24]. https://hqlo.biomedcentral.com/about?gclid=EAIaIQobChMI86yOpY3i-wIVTkYPAh2hoAwvEAEYASAAEgJ1tfD_BwE. DOI: 10.3389/fphys.2021.752716.
[31]
Yang YB, Li ZH, Liu Q, et al. Carotid arterial wall MRI of apolipoprotein e-deficient mouse at 7 T using DANTE-prepared variable-flip-angle rapid acquisition with relaxation enhancement[J]. Magn Reson Imaging, 2022, 86: 1-9 [2022-08-24]. https://www.sciencedirect.com/science/article/abs/pii/S0730725X21001934. DOI: 10.1016/j.mri.2021.10.026.

上一篇 磁共振表观扩散系数鉴别前列腺癌预后相关风险分层的应用研究
下一篇 靶向纤维蛋白多肽纳米探针在增强静脉血栓磁共振显像的研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2