分享:
分享到微信朋友圈
X
综述
酰胺质子转移成像在直肠癌中的研究进展
马文婷 王莉莉 魏照坤 雷建凯 马小梅

Cite this article as: MA W T, WANG L L, WEI Z K, et al. Research progress of amide proton transfer imaging in rectal neoplasms[J]. Chin J Magn Reson Imaging, 2023, 14(3): 189-192, 197.本文引用格式:马文婷, 王莉莉, 魏照坤, 等. 酰胺质子转移成像在直肠癌中的研究进展[J]. 磁共振成像, 2023, 14(3): 189-192, 197. DOI:10.12015/issn.1674-8034.2023.03.035.


[摘要] 酰胺质子转移(amide proton transfer, APT)成像基础为细胞内游离蛋白及多肽酰胺质子与自由水中的氢质子发生交换,肿瘤恶性程度越高,细胞内游离蛋白质及多肽含量越多,APT信号增高。本文汇总APT成像诊断直肠癌的国内外相关文献,希望将APT成像用于直肠癌临床早期诊断及疗效评估,提高直肠癌患者生存率。国内外文献研究APT成像诊断直肠癌主要集中在以下几个方面:评估直肠癌组织学分级,预测直肠癌化疗疗效,预测大鼠肉瘤病毒癌(Kirsten rat sarcoma, KRAS)基因是否突变,预测直肠癌侵袭性。与常规MRI序列相比,APT成像可以无创性预测直肠癌侵袭性,进一步观察分子生物学改变。APT成像目前最常用于脑部肿瘤,空腔脏器所含成分复杂,因此临床应用受限,故本文汇总相关文献,探索人为均匀磁场方法,将APT成像这一反映蛋白质代谢的分子生物学检查方法用于直肠癌,开辟APT成像临床应用新领域。
[Abstract] Amide proton transfer (APT) imaging is based on the exchange of amide protons in intracellular proteins and polypeptides with hydrogen protons in free water. The more malignant rectal neoplasms, the more intracellular free proteins and polypeptides, and the higher APT signal. We summarizes the relevant domestic and foreign literatures of APT imaging in the diagnosis of rectal neoplasms, hoping to use APT imaging in the clinical early diagnosis and curative effect evaluation, improving the survival rate of rectal neoplasms patients. Domestic and foreign literature studies about APT imaging diagnosis of rectal neoplasms mainly focus on the following aspects: evaluating the histological grade of rectal cancer, predicting the efficacy of chemotherapy, predicting whether the Kirsten rat sarcoma (KRAS) gene is mutated, and predicting the invasion of rectal neoplasms. Compared with conventional MRI sequence, APT imaging can non-invasively predict the invasion of rectal neoplasms and observe the molecular biological changes. At present, APT imaging is most commonly used in brain tumors, the components of cavity organs are complex, the clinical application is limited, so our article summarizes the relevant literature, explores the method of uniform magnetic field, apply APT imaging which a molecular biological examination method to diagnose rectal cancer, and opening a new field about clinical application of APT imaging.
[关键词] 直肠癌;酰胺质子转移成像;化学交换饱和转移;磁共振成像;诊断;分级;预测
[Keywords] rectal neoplasms;amide proton transfer imaging;chemical exchange saturation transfer;magnetic resonance imaging;diagnosis;grading;prediction

马文婷 1   王莉莉 1*   魏照坤 1   雷建凯 2   马小梅 1  

1 甘肃省人民医院放射科,兰州 730000

2 甘肃省高台县中医医院放射科,张掖 734300

通信作者:王莉莉,E-mail:wanglilihq@163.com

作者贡献声明:王莉莉参与设计本研究方案,对稿件重要内容进行修改;马文婷设计本研究方案,检索并查阅相关文献,起草和撰写稿件,对稿件重要内容进行修改;魏照坤、雷建凯、马小梅获取、分析或解释本研究的文献,对稿件重要内容进行了修改;王莉莉获得了甘肃省青年基金计划项目、甘肃省人民医院院内基金资助;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 甘肃省青年基金计划项目 20JR5RA143 甘肃省人民医院院内基金 20GSSY4-45
收稿日期:2022-10-23
接受日期:2023-02-28
中图分类号:R445.2  R735.37 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.03.035
本文引用格式:马文婷, 王莉莉, 魏照坤, 等. 酰胺质子转移成像在直肠癌中的研究进展[J]. 磁共振成像, 2023, 14(3): 189-192, 197. DOI:10.12015/issn.1674-8034.2023.03.035.

0 前言

       酰胺质子转移(amide proton transfer, APT)成像是一种基于化学交换饱和转移(chemical exchange saturation transfer, CEST)技术的MRI分子成像方法。APT技术最先用于脑部胶质细胞瘤的鉴别诊断、术前分级、复发鉴别及疗效评估,其原理为恶性肿瘤细胞增殖活跃,游离蛋白质和多肽明显增加,APT信号升高[1]。随着该技术的发展,APT成像逐步应用于颈部肿瘤、肺部肿瘤、乳腺癌、前列腺癌、膀胱癌、子宫内膜癌及宫颈癌诊断[2, 3, 4, 5, 6, 7, 8, 9]。由于APT信号与组织细胞内酸碱度及蛋白质含量相关,pH值及蛋白含量减低均可导致APT信号降低,利用此原理可以评估缺血性脑卒中进展阶段[10],评估儿童脑髓鞘发育情况[11]。目前我国结直肠癌发病率逐年升高,已跃居城市恶性肿瘤第2位,农村恶性肿瘤第5位。我国结直肠癌早期诊断率较发达国家偏低,多数患者确诊时已是中晚期,死亡率较高[12]。如能将APT技术应用于直肠癌的早期诊断,并评价其恶性程度及侵袭性,采用合适的临床治疗方案,将明显降低直肠癌病死率[13]。由于直肠属于空腔脏器,肠腔内含空气、水、食物残渣等混合物,容易导致磁场场强不均匀,而且肠道蠕动影响MRI质量,所以,目前国内外APT成像诊断直肠癌还处于科学研究及小范围试验层面,未能将其广泛应用于临床工作。故本文汇总APT成像诊断直肠癌的国内外相关文献,了解其在恶性程度分级、治疗疗效评估方面的价值。掌握人为均匀磁场的相关方法,提高成像质量,为临床广泛应用提供理论依据。

1 APT成像基本原理

       CEST技术利用人体内物质作为天然对比剂,通过人体内物质与水分子之间质子交换所产生的代谢率和浓度差,形成MRI对比度,间接反映代谢物的改变[14, 15]。CEST技术根据人体内葡萄糖、内源性活性氧簇、谷氨酸、脂肪、蛋白质及多肽、肌酸及肌醇等不同种类生物大分子衍生出多种分支技术,如APT技术、葡萄糖CEST技术、内源性活性氧簇技术、谷氨酸CEST技术、肌酸CEST技术、肌醇CEST技术、γ-氨基丁酸CEST技术[16]

       目前APT技术属于CEST技术中临床应用较成熟的一种。APT成像由约翰•霍普金斯大学的周进元教授在2003年提出,是一种基于CEST的无创性MRI分子成像方法[17, 18]。利用内源性可移动蛋白及多肽内的酰胺质子与自由水中的氢质子交换以产生MRI对比度,反映活体组织内部蛋白质代谢变化。酰胺质子的共振位置在距离水峰约+3.5 ppm处[19],在此处发射特定频率的偏振射频脉冲,酰胺质子中的氢质子被饱和,饱和的氢质子与自由水中未饱和的氢质子产生交换传递。虽然人体内酰胺质子浓度极低,但持续交换和饱和可以使其灵敏度提高100~1000倍,最终通过检测自由水信号的衰减来反映组织中酰胺质子的浓度及其组织环境[20, 21]。我们把水共振频率+3.5 ppm的非对称性磁化转移速率之差当做APT信号强度。APT信号来源于以下两方面:其一,肿瘤细胞增殖活跃,细胞内源性移动蛋白和多肽明显表达,能够促进酰胺质子交换转移过程,导致APT信号增高,此为最主要原因;其二,恶性肿瘤血供丰富,血管生成明显增多,血管内血红蛋白和血浆蛋白浓度明显增高也可导致APT信号增高[22]

2 APT成像在直肠癌中的应用

2.1 APT成像评估直肠癌组织学分级

       NISHIE等[23]的前瞻性研究发现中分化腺癌的APT信号明显高于高分化腺癌,而表观扩散系数(apparent diffusion coefficient, ADC)值无差异,提示APT成像可以分辨恶性肿瘤分化程度,进一步提示病理组织学分级。原因主要为肿瘤的组织病理学分级越高,细胞增殖越迅速,肿瘤细胞越密集,内源性移动蛋白和多肽明显增加,导致APT信号增高。另一个重要原因可能为高级别肿瘤细胞异型核的数目明显增加,而异型核可以诱导大分子和疏水性细胞膜之间分子交换,促进蛋白质和多肽释放[24]。目前临床良恶性病变判断及恶性程度评价主要依靠扩散加权成像(diffusion-weighted imaging, DWI),DWI反映水分子的扩散,APT反映蛋白质代谢,DWI和APT相结合可以深入了解水和蛋白质两种不同物质的代谢情况[25],进一步评估肿瘤组织病理学分级。

       LI等[26]回顾性研究结果同样表明APT有助于区分直肠常见腺癌的组织学分级,其曲线下面积(area under the curve, AUC)为0.737,高于体素内不相干运动(intravoxel incoherent motion, IVIM)检查。同时该研究表明APT成像可区分直肠黏液腺癌和直肠其他常见腺癌,原因为黏液腺癌肿瘤实质中黏液蛋白含量明显高于其他类型腺癌,黏液蛋白导致APT信号明显增高。

       广西中医药大学李玲团队回顾性研究表明T3高级别直肠腺癌的平均APT信号、平均峰度较T2低级别肿瘤显著升高(P<0.05)。该研究指出APT成像区分高、低级别直肠腺癌的敏感度为92.31%,特异度为79.17%,诊断能力强于扩散峰度成像(diffusion kurtosis imaging, DKI)及DWI[27]

       APT成像可以评价直肠肿瘤分化程度,提示直肠癌恶性程度,同时APT成像具有区分直肠癌组织学类型的潜能。APT成像和DWI临床联合使用可以评估肿瘤分子生物学改变,精准评价肿瘤组织分级。但APT成像对局部场强的均匀性要求很高,易受肠腔内气体干扰,图像质量不稳定,该问题有待我们解决。

2.2 APT成像在预测直肠癌化疗疗效方面的应用

       NISHIE团队[28]统计了17例接受APT成像检查并进行新辅助化疗的晚期直肠癌患者,根据其对新辅助化疗的反应分为高反应性组和低反应性组。结果发现低反应性组的平均APT信号明显高于高反应性组(P<0.05)。APT成像预测晚期直肠癌化疗反应性的AUC值为0.87,敏感度为75%,特异度为100%。由此判断APT成像能在治疗前有效评估直肠癌化疗预后。原因可能为化疗低反应性组的直肠腺癌肿瘤内含有更丰富黏蛋白[29],所以APT信号增高。大连医科大学团队及广州中医药大学团队[30, 31]提出,化疗后肿瘤细胞增殖减慢或停止,蛋白质合成明显减少,APT信号减低,所以APT成像可以定量区分直肠癌化疗和未化疗的病灶。以上研究表明,APT成像作为非侵入性影像学手段可以定量评价直肠癌化疗疗效,敏感度和特异度高,临床可以广泛应用。

2.3 APT成像在预测直肠癌KRAS基因突变方面的应用

       美国国家综合癌症网络(National Comprehensive Cancer Network, NCCN)结直肠癌指南建议,抗表皮生长因子受体(epidermal growth factor receptor, EGFR)靶向治疗前应接受大鼠肉瘤病毒癌(Kirsten rat sarcoma, KRAS)基因检测,若KRAS基因存在突变则不建议接收靶向治疗[32]。因此,明确KRAS是否突变对于治疗方案选择极其重要。丘清[33]发现KRAS基因突变型直肠癌患者APT信号高于KRAS基因未突变型(P<0.01),APT成像预测直肠癌KRAS基因突变的效能为中等水平(AUC=0.80)。分析其原因主要为:(1)KRAS基因突变导致多条信号通路异常激活,如Ras-Raf-MAPK信号通路[34]、Ral[35]信号通路。通路激活将促进细胞分裂增生,进而导致APT信号增高。此外,突变的KRAS基因通过分泌多种趋化因子从而对肿瘤微环境产生影响,营造出更适宜肿瘤细胞增殖的环境,使得细胞增殖加快,肿瘤细胞增多,胞浆蛋白增多,APT信号增高。这些趋化因子常见的有白细胞介素[36]、粒细胞-巨噬细胞集落刺激因子[37]。(2)较多研究表明,KRAS基因突变与血管生长因子的调节相关,可以促进新血管生成,大量新生血管中的血红蛋白、血浆蛋白和白蛋白使得APT信号明显增高[38]。以上研究表明APT成像具有无创性预测直肠癌KRAS基因突变的潜能,可以影像判断靶向治疗有无意义,精准选择临床治疗方案。

2.4 APT成像预测直肠癌侵袭性方面的应用

       直肠腺癌的预后与肿瘤TNM分期、P53蛋白表达、Ki-67增殖指数等因素密切相关[39]。广州中医药大学李玲团队[40]研究表明APT信号与直肠腺癌p53蛋白和Ki-67的表达呈正相关。DWI指标ADC值与p53指数无相关性。说明APT成像可以预测直肠腺癌Ki-67高、低表达及p53阴、阳性表达。这是因为Ki-67指数越高,肿瘤增殖越快,APT信号越高[41, 42],这与日本九州大学TOGAO等学者研究一致[43],该研究表明APT信号与脑部胶质瘤Ki-67指数呈正相关,认为原因同样为肿瘤细胞增殖导致内源性活性蛋白与多肽增加。p53基因突变使得血管内皮生长因子过度表达,产生更多微小血管,新生血管中丰富的血浆、血红蛋白[44]导致APT信号增高。这说明APT信号的高低在一定程度上反映直肠腺癌的增殖活性,这与北京协和医院金征宇团队研究一致[45]

       李玲团队发表在European Radiology的回顾性研究表明[27],具有淋巴结转移和壁外静脉浸润的直肠癌灶具有更高的APT信号,这是因为淋巴结转移和壁外静脉浸润提示肿瘤侵袭度高[46],蛋白质和多肽增殖速度快,肿瘤新生血管多,血红蛋白和血浆蛋白丰富,APT信号明显升高。

       以上研究表明,APT信号与直肠腺癌侵袭性相关免疫指标呈正相关,可以评价直肠癌恶性程度及周围淋巴结和血管侵犯情况,临床重复性良好,为临床治疗方案选择及手术指导、预后评价提供影像价值。

3 APT成像在直肠诊断方面图像质量的改进

       APT成像检查对MR场强要求较高,只适用于场强3.0 T的MRI设备[47]。直肠肠腔内成分混杂,并不是一个均质的成像环境,且肠道蠕动容易产生磁场不均匀性,故而采取以下措施来人为均匀磁场,提高APT成像参数的稳定性。(1)检查前10 min给患者肌注10 mg山莨菪碱,抑制肠道蠕动,保证图像质量;(2)检查前灌肠,排除食物残渣,减少图像伪影;(3)检查前10 min经肛门注入适量超声耦合剂(约10~40 mL),对肠道进行填充,避免因气体导致磁敏感伪影[48];(4)APT成像采集时间较长,约11 min,在增强扫描打药前扫描APT序列,避免长时间扫描造成患者烦躁而产生运动伪影[49]

4 小结与展望

       APT成像通过检测细胞内游离蛋白质及多肽酰胺质子浓度,判断直肠癌病理组织学分级,对直肠癌化疗疗效评估有指导意义。APT成像可以无创性预测肿瘤细胞侵袭性,反映细胞增殖情况,并且重复性良好,将其与DWI联合使用可以克服传统形态学成像的不足,进一步观察分子生物学改变,做到早期精准诊断直肠癌,将来可能替代侵入性活检作为早期治疗疗效评估的手段。但APT成像仅适用于高场强MR,临床应用时必须做好扫描前准备,人为均匀磁场,提高图像质量。期待APT技术早日广泛应用于临床,早期精准诊断并评估直肠癌,降低我国直肠癌病死率。

[1]
CHOI Y S, AHN S S, LEE S K, et al. Amide proton transfer imaging to discriminate between low- and high-grade gliomas: added value to apparent diffusion coefficient and relative cerebral blood volume[J]. Eur Radiol, 2017, 27(8): 3181-3189. DOI: 10.1007/s00330-017-4732-0.
[2]
JIANG S S, GUO P F, HEO H Y, et al. Radiomics analysis of amide proton transfer-weighted and structural MR images for treatment response assessment in malignant gliomas[J/OL]. NMR Biomed, 2023, 36(1): e4824 [2022-10-22]. https://pubmed.ncbi.nlm.nih.gov/36057449/PMC36057449. DOI: 10.1002/nbm.4824.
[3]
SONG Q L, TIAN S F, MA C J, et al. Amide proton transfer weighted imaging combined with dynamic contrast-enhanced MRI in predicting lymphovascular space invasion and deep stromal invasion of IB1-IIA1 cervical cancer[J/OL]. Front Oncol, 2022, 12: 916846 [2022-10-22]. https://pubmed.ncbi.nlm.nih.gov/36172148/. DOI: 10.3389/fonc.2022.916846.
[4]
TOGAO O, KESSINGER C W, HUANG G, et al. Characterization of lung cancer by amide proton transfer (APT) imaging: an in-vivo study in an orthotopic mouse model[J/OL]. PLoS One, 2013, 8(10): e77019 [2022-10-22]. https://pubmed.ncbi.nlm.nih.gov/24143199/. DOI: 10.1371/journal.pone.0077019.
[5]
DULA A N, ARLINGHAUS L R, DORTCH R D, et al. Amide proton transfer imaging of the breast at 3 T: establishing reproducibility and possible feasibility assessing chemotherapy response[J]. Magn Reson Med, 2013, 70(1): 216-224. DOI: 10.1002/mrm.24450.
[6]
LAW B K H, KING A D, AI Q Y, et al. Head and neck tumors: amide proton transfer MRI[J]. Radiology, 2018, 288(3): 782-790. DOI: 10.1148/radiol.2018171528.
[7]
WANG H J, CAI Q, HUANG Y P, et al. Amide proton transfer-weighted MRI in predicting histologic grade of bladder cancer[J]. Radiology, 2022, 305(1): 127-134. DOI: 10.1148/radiol.211804.
[8]
TAKAYAMA Y, NISHIE A, SUGIMOTO M, et al. Amide proton transfer (APT) magnetic resonance imaging of prostate cancer: comparison with Gleason scores[J]. MAGMA, 2016, 29(4): 671-679. DOI: 10.1007/s10334-016-0537-4.
[9]
何泳蓝, 林澄昱, 戚亚菲, 等. 3D酰胺质子转移成像用于宫颈鳞癌和正常宫颈基质的鉴别诊断研究[J]. 放射学实践, 2019, 34(11): 1198-1201. DOI: 10.13609/j.cnki.1000-0313.2019.11.005.
HE Y L, LIN C Y, QI Y F, et al. Three-dimensional amide proton transfer-weighted MR imaging for differentiating cervical squamous cell carcinoma from normal cervix[J]. Radiol Pract, 2019, 34(11): 1198-1201. DOI: 10.13609/j.cnki.1000-0313.2019.11.005.
[10]
FOO L S, HARSTON G, MEHNDIRATTA A, et al. Clinical translation of amide proton transfer (APT) MRI for ischemic stroke: a systematic review (2003-2020)[J]. Quant Imaging Med Surg, 2021, 11(8): 3797-3811. DOI: 10.21037/qims-20-1339.
[11]
ZHANG H, KANG H Y, ZHAO X N, et al. Amide Proton Transfer (APT) MR imaging and Magnetization Transfer (MT) MR imaging of pediatric brain development[J]. Eur Radiol, 2016, 26(10): 3368-3376. DOI: 10.1007/s00330-015-4188-z.
[12]
中华医学会肿瘤学分会早诊早治学组. 中国结直肠癌早诊早治专家共识[J]. 中华医学杂志, 2020, 100(22): 1691-1698. DOI: 10.3760/cma.j.cn112137-20190924-02103.
Early Diagnosis and Treatment Group of Oncology Branch of Chinese Medical Association. Expert consensus on early diagnosis and treatment of colorectal cancer in China[J]. Natl Med J China, 2020, 100(22): 1691-1698. DOI: 10.3760/cma.j.cn112137-20190924-02103
[13]
李玲. 三维酰胺质子转移磁共振成像对直肠腺癌不同病理预后因素的评价研究[D]. 广州: 广州中医药大学, 2021. DOI: 10.27044/d.cnki.ggzzu.2021.000191.
LI L. Using 3D amide proton transfer MR imaging to assess different pathological prognostic factors of rectal adenocarcinoma[D]. Guangzhou: Guangzhou University of Chinese Medicine, 2021. DOI: 10.27044/d.cnki.ggzzu.2021.000191.
[14]
李丽, 王振雄, 方纪成, 等. 化学交换饱和转移衍生新技术的开发与临床应用[J]. 放射学实践, 2020, 35(1): 2-8. DOI: 10.13609/j.cnki.1000-0313.2020.01.001.
LI L, WANG Z X, FANG J C, et al. Development and clinical application of a new technology derived from chemical exchange saturation transfer[J]. Radiol Pract, 2020, 35(1): 2-8. DOI: 10.13609/j.cnki.1000-0313.2020.01.001.
[15]
VAN ZIJL P C M, YADAV N N. Chemical exchange saturation transfer (CEST): what is in a Name and what isn't?[J]. Magn Reson Med, 2011, 65(4): 927-948. DOI: 10.1002/mrm.22761.
[16]
闫爽, 李明利, 金征宇. 化学交换饱和转移技术原理及应用进展[J]. 磁共振成像, 2016, 7(4): 241-248. DOI: 10.12015/issn.1674-8034.2016.04.001.
YAN S, LI M L, JIN Z Y. Principle and application progress of chemical exchange saturation transfer(CEST) technique[J]. Chin J Magn Reson Imaging, 2016, 7(4): 241-248. DOI: 10.12015/issn.1674-8034.2016.04.001.
[17]
ZHOU J Y, BLAKELEY J O, HUA J, et al. Practical data acquisition method for human brain tumor amide proton transfer (APT) imaging[J]. Magn Reson Med, 2008, 60(4): 842-849. DOI: 10.1002/mrm.21712.
[18]
ZHOU J Y, HEO H Y, KNUTSSON L, et al. APT-weighted MRI: techniques, current neuro applications, and challenging issues[J]. J Magn Reson Imaging, 2019, 50(2): 347-364. DOI: 10.1002/jmri.26645.
[19]
WARD K M, ALETRAS A H, BALABAN R S. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST)[J]. J Magn Reson, 2000, 143(1): 79-87. DOI: 10.1006/jmre.1999.1956.
[20]
刘娜. 酰胺质子转移成像在肿瘤影像学中的应用进展[J]. 实用医学影像杂志, 2020, 21(1): 50-52. DOI: 10.16106/j.cnki.cn14-1281/r.2020.01.019.
LIU N. Application progress of amide proton transfer imaging in tumor imaging[J]. J Pract Med Imaging, 2020, 21(1): 50-52. DOI: 10.16106/j.cnki.cn14-1281/r.2020.01.019.
[21]
张思雨, 孙洪赞. 酰胺质子转移加权成像在肿瘤中的应用进展[J]. 磁共振成像, 2019, 10(8): 629-632. DOI: 10.12015/issn.1674-8034.2019.08.015.
ZHANG S Y, SUN H Z. Applications of amide proton transfer weighted imaging in tumor[J]. Chin J Magn Reson Imaging, 2019, 10(8): 629-632. DOI: 10.12015/issn.1674-8034.2019.08.015.
[22]
ZHOU J Y, PAYEN J F, WILSON D A, et al. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI[J]. Nat Med, 2003, 9(8): 1085-1090. DOI: 10.1038/nm907.
[23]
NISHIE A, TAKAYAMA Y, ASAYAMA Y, et al. Amide proton transfer imaging can predict tumor grade in rectal cancer[J]. Magn Reson Imaging, 2018, 51: 96-103. DOI: 10.1016/j.mri.2018.04.017.
[24]
MILOT L. Amide proton transfer-weighted MRI: insight into cancer cell biology[J]. Radiology, 2022, 305(1): 135-136. DOI: 10.1148/radiol.221376.
[25]
KAMIMURA K, NAKAJO M, YONEYAMA T, et al. Amide proton transfer imaging of tumors: theory, clinical applications, pitfalls, and future directions[J]. Jpn J Radiol, 2019, 37(2): 109-116. DOI: 10.1007/s11604-018-0787-3.
[26]
LI J, LIN L J, GAO X M, et al. Amide proton transfer weighted and intravoxel incoherent motion imaging in evaluation of prognostic factors for rectal adenocarcinoma[J/OL]. Front Oncol, 2021, 11: 783544 [2022-10-22]. https://pubmed.ncbi.nlm.nih.gov/35047400/. DOI: 10.3389/fonc.2021.783544.
[27]
CHEN W C, LI L, YAN Z X, et al. Three-dimension amide proton transfer MRI of rectal adenocarcinoma: correlation with pathologic prognostic factors and comparison with diffusion kurtosis imaging[J]. Eur Radiol, 2021, 31(5): 3286-3296. DOI: 10.1007/s00330-020-07397-1.
[28]
NISHIE A, ASAYAMA Y, ISHIGAMI K, et al. Amide proton transfer imaging to predict tumor response to neoadjuvant chemotherapy in locally advanced rectal cancer[J]. J Gastroenterol Hepatol, 2019, 34(1): 140-146. DOI: 10.1111/jgh.14315.
[29]
JIANG Y H, YOU K Y, QIU X S, et al. Tumor volume predicts local recurrence in early rectal cancer treated with radical resection: a retrospective observational study of 270 patients[J]. Int J Surg, 2018, 49: 68-73. DOI: 10.1016/j.ijsu.2017.11.052.
[30]
董宛, 陈安良, 刘爱连, 等. 初探酰胺质子转移加权和T2 mapping对直肠癌化疗和未化疗的定量对比研究[J]. 磁共振成像, 2021, 12(7): 24-28. DOI: 10.12015/issn.1674-8034.2021.07.005.
DONG W, CHEN A L, LIU A L, et al. Comparation of amide proton transfer-weighted and T2 mapping in quantifying rectal cancer with and without chemotherapy: a preliminary study[J]. Chin J Magn Reson Imaging, 2021, 12(7): 24-28. DOI: 10.12015/issn.1674-8034.2021.07.005.
[31]
CHEN W C, MAO L T, LI L, et al. Predicting treatment response of neoadjuvant chemoradiotherapy in locally advanced rectal cancer using amide proton transfer MRI combined with diffusion-weighted imaging[J/OL]. Front Oncol, 2021, 11: 698427 [2022-10-22]. https://pubmed.ncbi.nlm.nih.gov/34277445/. DOI: 10.3389/fonc.2021.698427.
[32]
GUPTA S, PROVENZALE D, LLOR X, et al. NCCN guidelines insights: genetic/familial high-risk assessment: colorectal, version 2.2019[J]. J Natl Compr Canc Netw, 2019, 17(9): 1032-1041. DOI: 10.6004/jnccn.2019.0044.
[33]
丘清. 酰胺质子转移及动态对比增强磁共振成像预测直肠癌KRAS基因突变的研究[D]. 广州: 南方医科大学, 2021. DOI: 10.27003/d.cnki.gojyu.2021.000556.
QIU Q. Predicting KRAS gene mutation in rectal cancer by using amide proton transfer and dynamic contrast-enhanced magnetic resonance imaging[D]. Guangzhou: Southern Medical University, 2021. DOI: 10.27003/d.cnki.gojyu.2021.000556.
[34]
YANG Q W, HUO S B, SUI Y J, et al. Mutation status and immunohistochemical correlation of KRAS, NRAS, and BRAF in 260 Chinese colorectal and gastric cancers[J/OL]. Front Oncol, 2018, 8: 487 [2022-10-22]. https://pubmed.ncbi.nlm.nih.gov/30416987/PMC6212577. DOI: 10.3389/fonc.2018.00487.
[35]
BUM-ERDENE K, GHOZAYEL M K, XU D, et al. Covalent fragment screening identifies Rgl2 RalGEF cysteine for targeted covalent inhibition of ral GTPase activation[J/OL]. ChemMedChem, 2022, 17(6): e202100750 [2022-10-22]. https://pubmed.ncbi.nlm.nih.gov/35061330/PMC9070689. DOI: 10.1002/cmdc.202100750.
[36]
SHANG A Q, GU C Z, ZHOU C, et al. Exosomal KRAS mutation promotes the formation of tumor-associated neutrophil extracellular traps and causes deterioration of colorectal cancer by inducing IL-8 expression[J/OL]. Cell Commun Signal, 2020, 18(1): 52 [2022-10-22]. https://pubmed.ncbi.nlm.nih.gov/32228650/PMC7106821. DOI: 10.1186/s12964-020-0517-1.
[37]
BOYER S, LEE H J, STEELE N, et al. Multiomic characterization of pancreatic cancer-associated macrophage polarization reveals deregulated metabolic programs driven by the GM-CSF-PI3K pathway[J/OL]. Elife, 2022, 11: e73796 [2022-10-22]. https://pubmed.ncbi.nlm.nih.gov/35156921/PMC8843093. DOI: 10.7554/eLife.73796.
[38]
DI MAGLIANO M P, LOGSDON C D. Roles for KRAS in pancreatic tumor development and progression[J]. Gastroenterology, 2013, 144(6): 1220-1229. DOI: 10.1053/j.gastro.2013.01.071.
[39]
HUR H, TULINA I, CHO M S, et al. Biomarker-based scoring system for prediction of tumor response after preoperative chemoradiotherapy in rectal cancer by reverse transcriptase polymerase chain reaction analysis[J]. Dis Colon Rectum, 2016, 59(12): 1174-1182. DOI: 10.1097/DCR.0000000000000711.
[40]
LI L, CHEN W C, YAN Z X, et al. Comparative analysis of amide proton transfer MRI and diffusion-weighted imaging in assessing p53 and ki-67 expression of rectal adenocarcinoma[J]. J Magn Reson Imaging, 2020, 52(5): 1487-1496. DOI: 10.1002/jmri.27212.
[41]
SUH C H, PARK J E, JUNG S C, et al. Amide proton transfer-weighted MRI in distinguishing high- and low-grade gliomas: a systematic review and meta-analysis[J]. Neuroradiology, 2019, 61(5): 525-534. DOI: 10.1007/s00234-018-02152-2.
[42]
YU H, WEN X R, WU P P, et al. Can amide proton transfer-weighted imaging differentiate tumor grade and predict Ki-67 proliferation status of meningioma?[J]. Eur Radiol, 2019, 29(10): 5298-5306. DOI: 10.1007/s00330-019-06115-w.
[43]
TOGAO O, YOSHIURA T, KEUPP J, et al. Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades[J]. Neuro Oncol, 2014, 16(3): 441-448. DOI: 10.1093/neuonc/not158.
[44]
BELLAMY W T. Vascular endothelial growth factor as a target opportunity in hematological malignancies[J]. Curr Opin Oncol, 2002, 14(6): 649-656. DOI: 10.1097/00001622-200211000-00010.
[45]
何泳蓝, 林澄昱, 戚亚菲, 等. 宫颈鳞癌酰胺质子转移加权成像与Ki-67表达的相关性研究[J]. 中华放射学杂志, 2021, 55(5): 517-521. DOI: 10.3760/cma.j.cn112149-20200415-00561.
HE Y L, LIN C Y, QI Y F, et al. Amide proton transfer-weighted MRI of cervical squamous carcinoma: correlation with Ki-67 proliferation status[J]. Chin J Radiol, 2021, 55(5): 517-521. DOI: 10.3760/cma.j.cn112149-20200415-00561.
[46]
DENOST Q, ASSENAT V, VENDRELY V, et al. Oncological strategy following R1 sphincter-saving resection in low rectal cancer after chemoradiotherapy[J]. Eur J Surg Oncol, 2021, 47(7): 1683-1690. DOI: 10.1016/j.ejso.2021.01.031.
[47]
HEO H Y, LEE D H, ZHANG Y, et al. Insight into the quantitative metrics of chemical exchange saturation transfer (CEST) imaging[J]. Magn Reson Med, 2017, 77(5): 1853-1865. DOI: 10.1002/mrm.26264.
[48]
宋军伟, 鲁卫东, 李晓景, 等. MRI结合腔内充盈耦合剂对直肠癌术前评估的应用研究[J]. 河北医科大学学报, 2020, 41(10): 1200-1205. DOI: 10.3969/j.issn.1007-3205.2020.10.018.
SONG J W, LU W D, LI X J, et al. Application of MRI combined with intraluminal filling coupling agent in preoperative evaluation of rectal cancer[J]. J Hebei Med Univ, 2020, 41(10): 1200-1205. DOI: 10.3969/j.issn.1007-3205.2020.10.018.
[49]
杨倩, 刘周, 邹丽艳, 等. 磁共振钆对比剂增强前后对APT信号影响的研究[J]. 磁共振成像, 2022, 13(6): 81-87. DOI: 10.12015/issn.1674-8034.2022.06.016.
YANG Q, LIU Z, ZOU L Y, et al. Quantification of the impact of Gadolinium agent on amide-proton-transfer weighted MRI: an ex vivo and in vivo study[J]. Chin J Magn Reson Imaging, 2022, 13(6): 81-87. DOI: 10.12015/issn.1674-8034.2022.06.016.

上一篇 影像组学与深度学习在预测肝细胞癌微血管侵犯中的研究进展
下一篇 深部浸润型子宫内膜异位症的MRI诊断现状及其研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2