分享:
分享到微信朋友圈
X
综述
法布雷病心脏磁共振应用进展
李裕国 赵韧 余永强 侯唯姝 李小虎

Cite this article as: LI Y G, ZHAO R, YU Y Q, et al. Advances in the application of cardiac MRI in diagnosis of Fabry disease[J]. Chin J Magn Reson Imaging, 2023, 14(12): 172-176.本文引用格式:李裕国, 赵韧, 余永强, 等. 法布雷病心脏磁共振应用进展[J]. 磁共振成像, 2023, 14(12): 172-176. DOI:10.12015/issn.1674-8034.2023.12.031.


[摘要] 法布雷病(Fabry disease, FD)是一种罕见的X连锁遗传溶酶体贮积症,导致α-半乳糖苷酶缺乏,并使代谢底物在包括心脏在内的不同器官中贮存,出现心肌炎症、左心室肥厚(left ventricular hypertrophy, LVH)和心肌纤维化。T1 mapping、T2 mapping、T2* mapping、延迟强化(late gadolinium enhancement, LGE)、应变成像和灌注成像等心脏磁共振(cardiac magnetic resonance, CMR)新技术是正确诊断FD和其他肥厚型心脏疾病的重要工具,可对心脏结构、运动、组织学特性进行一站式检查,本研究综述FD在CMR各项技术中的特征性影像表现,以及CMR在FD早期诊断、危险分层、预后评估及监测治疗等方面的重要作用。以期推广CMR在临床诊疗工作中的应用,为FD早期诊断、鉴别诊断和治疗效果评估提供有力的诊断工具。
[Abstract] Fabry disease is a rare X-linked genetic lysosomal storage disorder, which leads to reduction of α-galactosidase A and accumulation of metabolic substrates in heart and other organs. Cardiac magnetic resonance (CMR) with development of new techniques, such as mapping analysis, late gadolinium enhancement (LGE) assessment, strain imaging and perfusion imaging, plays an important role in distinguishing FD from other hypertrophic heart conditions. CMR offers a comprehensive evaluation of cardiac structure, function, and histological characteristics in a 'one-stop shop' approach. Our study comprehensively reviewed the characteristic features of FD in various CMR techniques, including tissue changes in the early stages of the disease. Furthermore, we emphasized the significant role of CMR in early diagnosis, risk stratification, prognosis assessment, and treatment monitoring in FD. The aim is to achieve early and accurate diagnosis of FD in the clinical practice, differentiate FD from other hypertrophic cardiac diseases, thus enabling early intervention and treatment for FD patients, ultimately improving prognosis.
[关键词] 法布雷病;心脏磁共振;磁共振成像;T1 mapping;左心室肥厚;心肌病
[Keywords] Fabry disease;cardiac magnetic resonance;magnetic resonance imaging;T1 mapping;left ventricular hypertrophy;cardiomyopathy

李裕国 1   赵韧 2   余永强 1   侯唯姝 1   李小虎 1*  

1 安徽医科大学第一附属医院医学影像科,合肥 230022

2 安徽医科大学第一附属医院心血管内科,合肥 230022

通信作者:李小虎,E-mail:lixiaohu@ahmu.edu.cn

作者贡献声明:李小虎设计本综述的框架,对磁共振诊断内容进行了修改,获得了国家自然科学基金的资助;李裕国起草和撰写稿件,获取、整理、分析本研究的文献;赵韧、余永强、侯唯姝分析本研究的文献,对稿件磁共振技术及诊断部分内容进行了修改。全体作者都同意最后的修改稿发表,都同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金项目 82071897
收稿日期:2022-05-01
接受日期:2023-11-27
中图分类号:R445.2  R542.2 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2023.12.031
本文引用格式:李裕国, 赵韧, 余永强, 等. 法布雷病心脏磁共振应用进展[J]. 磁共振成像, 2023, 14(12): 172-176. DOI:10.12015/issn.1674-8034.2023.12.031.

0 前言

       法布雷病(Fabry disease, FD)是一种溶酶体贮存障碍,由于位于X染色体(Xq22.1)上的GLA基因突变导致α-半乳糖苷酶A(α-Gal A)的缺乏,进而导致鞘糖脂,尤其是三己糖酰基鞘脂醇(globotriaosylceramide, GL-3)在全身不同类型细胞中积累,GL-3及其衍生物的积累会导致多系统疾病,主要累及肾脏、心脏和神经系统[1, 2]。目前FD确切的患病率尚不明确,最新的国内研究[3, 4]表明,FD在普通人群中预估患病率为1/100 000。按临床表现分为经典型和迟发型[5],经典型多于儿童期发病,临床表现较为复杂,可累及周围神经、面部、皮肤、眼部、肾脏、心脏、中枢神经系统、呼吸系统等多个器官及系统。而迟发型多以成年后发病为主,主要是心脏、肾脏受累表现[6, 7, 8, 9]。资料显示目前国内诊断为FD的患者中66.1%男性患者为经典型,75.0%女性患者为迟发型[10, 11, 12]。FD患者的心脏受累表现为进行性左室壁增厚(肥大)和瘢痕(纤维化)[2]。由于心力衰竭和危及生命的室性心律失常,心脏病是FD患者发病和死亡的最常见原因[3]

       因为其所具有的罕见性、遗传性及多系统受累性,所以对FD的早发现、早诊断、早治疗变得极为重要[13, 14, 15]。目前,FD与肥厚型心肌病(hypertrophic cardiomyopathy, HCM)等其他左心室肥厚(left ventricular hypertrophy, LVH)病因的鉴别仍然是临床面临的挑战[16, 17, 18],将FD误诊为HCM对患者的影响较为严重,因为FD患者需要尽早的酶替代治疗(enzyme replacement therapy, ERT)以延缓疾病进展[16, 19]。心脏磁共振(cardiac magnetic resonance, CMR)的各种成像序列可以完成对心脏功能、结构、组织的全面检查,并且具有较高的软组织分辨力和较好的可重复性等优势,是正确诊断FD、对FD进行风险分层和预后评估,以及区分FD和其他肥厚型心肌病的重要工具[20]。同时CMR能够检测心脏组织在疾病早期的变化,在FD的早期治疗和治疗效果监测中能够发挥重要作用[21, 22]。鉴于CMR对疑似FD患者诊断及确诊FD患者预后评估的重要性,为普及CMR在临床工作中的应用,本文就CMR各项临床常用技术以及新技术在FD早期诊断中的价值和指导治疗的意义等方面的研究进展综述如下。

1 FD心脏病变的病理基础及传统诊断方法

       心脏受累是限制FD患者生活质量、造成FD患者死亡的首要原因。FD心脏受累的表现包括心室肥厚和纤维化、瓣膜增厚或反流、心力衰竭、心绞痛、心律失常及心源性猝死等。GL-3贮积于心肌细胞内可导致LVH和舒张功能障碍,贮积于心肌血管内皮细胞和平滑肌细胞内可导致血管结构异常、心肌缺血,贮积于传导系统内可导致房室传导及室内传导功能异常、心房颤动及室性心律失常。除机械占位效应外,GL-3贮积可进一步激活下游信号通路,引发肌原纤维溶解、慢性炎症和自身免疫反应等功能受损。

       心电图异常是FD最早的表现之一,PR间期缩短、复极化异常和左心室电压异常是其典型征象,且可早于心脏整体结构异常出现[3]。然而,仅凭上述非特异性的心电图改变诊断FD并不准确。心脏超声是临床识别LVH最常用的检查手段,右心室肥厚(right ventricular hypertrophy, RVH)是FD心脏受累的常见特征之一,乳头肌肥大是其较为特异的表现。但心脏超声在测量心室质量、心室容积等参数方面精确度不高,且无法早期反映心肌的组织学特征。与心电图和心脏超声相比,CMR在测量射血分数及心室容积等方面具有高度的准确性和可重复性,在心脏解剖和结构评估上具有不可取代的优势,此外,使用心肌应变分析、延迟强化(late gadolinium enhancement, LGE)以及初始T1 mapping和细胞外体积(extra-cellular volume, ECV)测量等对组织定量评估,可以检测出大多数具有轻度或亚临床心脏表型的基因型阳性患者。这都表明CMR是评估无症状FD患者以及检测GL-3在心肌、微血管、传导系统和瓣膜的亚临床沉积的一种具有独特价值的诊断工具。然而,由于设备要求、检查时间长、依赖患者配合等因素,CMR图像相较于超声心动图等传统诊断方式获得图像的难度更大;而且设备兼容性问题以及伪影的存在也会限制图像的准确评估,这都给技术人员和诊断医师带来了极大的挑战。

2 CMR在FD中应用的研究进展

2.1 CMR相关技术在FD诊断及鉴别诊断中的应用

2.1.1 CMR电影图像

       CMR的电影序列显示出FD患者心脏形态和功能异常主要包括LVH、乳头肌增厚、RVH,以及(终末期)收缩功能障碍[23]。HANNEMAN等[24]报告了90例FD患者的心脏MRI表现,发现其中40%的患者有LVH。然而,临床上更常见的肥厚型心肌病也有类似的表现,在KARUR等[25]的研究中,FD和HCM患者的LVH、右室肥厚及LGE的存在均无显著差异。在FD和HCM的LVH的表现特点上,徐杨飞等[11]在最近的研究发现,FD患者的左心室增厚多表现为左心室壁对称性或大致对称性增厚(8例中的5例),HCM患者的LVH多表现为非对称性室间隔增厚为主(16例中的14例),左心室对称性增厚很少见。然而,仅凭解剖结构的差异鉴别FD与HCM仍存在困难,需要更多的成像序列进一步鉴别诊断[12]

2.1.2 LGE

       FD患者的LGE成像常表现为左室基底部近下壁侧壁心肌中层或心外膜下的信号变化,这可能是由于左心室壁应力不均匀、微血管功能障碍或慢性心肌炎症所致[26]。病程初期儿童和青年FD患者心室壁厚度正常,但逐渐在肌细胞中积累鞘脂,心肌T1值随之减少。随着神经鞘脂积累增多,心肌细胞出现炎症变化和反应性肥厚,此时患者的心脏MRI上会出现原因未知的LVH和心肌纤维化[27, 28, 29]。当纤维化发生时,LGE通常局限于左心室基底和基底部近下壁侧壁,位于心肌中层或者心外膜下[29]。在HANNEMAN等[24]的研究中,85例FD患者中35例出现LGE,并且其中31例位于基底下侧壁。MOONEN等[28]对一组不明原因的LGE患者进行了基因测序检测,80名患者中2名FD基因检测为阳性,在这两例中,LGE在CMR上的分布都是在基底下间隔壁及下外侧壁,值得注意的是,这两例患者均有严重的局部LVH,而且这两名患者都曾接受心脏MRI检查,结果均为HCM可能。此外,NOJIRI等[29]的研究中发现,与LGE阴性患者相比,LGE阳性患者年龄更大、有更高的左心室重量指数、更高的脑钠肽水平和更高的NYHA(New York Heart Association)心功能等级,这可能与神经鞘脂逐渐累积恶化有关。HANNEMAN等的研究中,LVH和LGE是调整分析中复合终点的独立预测因素,其中广泛性LGE的患者风险最高(HR:12;95% CI:2.0~67.0;P=0.006)。上述研究表明,LGE不仅是FD心脏病变诊断的重要组织学表征而且是预测FD心血管不良事件的重要指标,其独立且递增的预后价值超过了LVH和部分临床参数[25, 30]。在FD进展的终末期,LGE和/或纤维化扩展到邻近的心脏区域,心肌肥厚可能演变为心肌壁变薄和心功能的恶化。这些研究都表明LGE是FD的危险因素。

2.1.3 T1 mapping成像及ECV测定

       CMR已成为评估心肌活力和检测急性心肌水肿的无创工具,其中心脏T1 mapping成像技术进一步扩展了心血管磁共振反映心肌病理化的能力[31, 32, 33, 34]。通过量化纵向T1弛豫时间生成的伪彩图能够直观反映心肌细微的病理变化,同时,心肌的定量初始T1值在纤维化、水肿和淀粉样蛋白的心肌较高,而在铁过载和局灶性脂肪浸润的心肌中较低。初始T1值的降低在正常壁厚的患者中可以检测到,在LVH的患者中更严重,这表明T1 mapping也可用于疾病早期阶段的诊断[35]。在KARUR等[25]的研究中,30例FD患者的左室间隔、左室总体及右室平均初始T1值均较HCM患者组减低;是否接受ERT及不同性别的FD患者的初始T1值并无显著差异;同时FD患者的右心室初始T1值高于左室间隔及左室总体的初始T1值。该研究还显示,在可疑FD患者中,由于左室间隔初始T1值更好辨别、易于测量、相对右室初始T1值具有更好的可重复性等,推荐测量左室间隔初始T1值。初始T1值随疾病进展和鞘脂积累而改变[32, 36, 37]。纤维化发生后由于鞘脂沉积和纤维化在同一区域的存在,CMR可能显示T1值正常,但整个心肌仍然存在一定的不均匀性,其中左室间隔初始T1值大多保持减低,而侧壁初始T1值较高[25]。上述一系列研究表明,初始T1值减低是显示心肌内鞘脂积累的重要指标。相较于LGE,T1 mapping成像克服了钆造影剂对于终末期肾病患者的局限性;而且当心肌均匀、弥漫性受累时,T1 mapping成像的诊断准确性优于LGE。

2.1.4 T2加权成像、T2 mapping成像及T2* mapping成像

       T2加权成像及T2 mapping成像是全面评估整体心肌炎症的重要工具,在疾病早期阶段的作用尤为明显。在PIERONI等[38]的研究中,FD的心肌水肿多发生在基底部前室间隔(70%),少数发生在前外侧壁。另一方面,PERRY等[39]检测到基底部下外侧壁的T2信号升高,且T2值与肌钙蛋白水平之间存在相关性。这些研究也说明了FD相关心脏病变是一种炎症性和浸润性心肌病。

       T2* mapping技术主要应用于心肌铁沉着相关性疾病、缺血再灌注出血。由于铁过载亦可导致心肌T1值的减低,SADO等[33]对8例T1值减低的FD患者进行了T2* mapping成像,结果所有患者均未发现心肌铁沉着(T2*>20 ms)。因此T2* mapping成像能够起到鉴别诊断的作用,对于临床表现不明确的T1值减低患者,可以进行T2* mapping成像以明确诊断。

2.1.5 CMR应变成像

       心肌应变,是指心肌收缩而导致心肌的形变,心肌应变异常的出现可早于射血分数的变化和室壁运动异常的产生[40]。CMR特征追踪(cardiac magnetic resonance feature tracking, CMR-FT)技术近年来逐渐运用于临床,可依赖常规电影序列评估心肌应变。MATHUR等[41]通过分析心肌应变测试了CMR检测疾病早期心脏受累的能力,研究发现从基底到心尖的周向应变率的减低可能是早期心脏受累的标志,且其独立性和增量值超过了初始T1值,而FD患者的整体纵向应变、整体周向应变和基底到心尖的纵向应变与对照组无显著差异。因此,整体应变的变化可能是心脏受累相对较晚的征象[42, 43],且通常意味着未来更高的心血管事件的发生率[44]。BERNARDINI等[45]对45例FD患者进行左房功能损伤的评估,发现左心房的总体应变下降,而且应变受损随FD的心室特征改变及其心外表现的进展而加重,说明左心房总体应变可能作为FD早期心脏受累的潜在指标,有助于FD在发现LVH前的诊断。因此心肌应变可以更准确反映心室及心房功能改变,有助于心脏受累的早期发现[46, 47]

2.1.6 CMR灌注成像

       导致FD不良结局的关键过程包括心肌的鞘脂累积,心肌肥大、炎症和纤维化等,都可以通过多参数心血管磁共振进行量化[48, 49]。CHIMENTI等[50]发现,心绞痛和FD患者有明显的灌注缺损、冠脉慢血流、壁内动脉狭窄,并伴有心肌纤维化。这种小血管疾病不仅可能导致症状限制,而且可能导致进行性心肌功能障碍。心血管磁共振灌注成像可以更快速的进行灌注的定量分析,还可以进一步对微血管功能障碍的评估。KNOTT等[51]发现在FD疾病的早期阶段即可出现心肌血流(myocardial blood flow, MBF)的减少,并与损伤的严重程度相关。FD患者心肌灌注,特别是心内膜下的灌注较正常对照组降低。此外,FD患者的整体负荷MBF和存在LVH受试者的MBF均显著降低,且有胸痛和呼吸困难等症状的FD患者的负荷MBF要低于无症状受试者,这可能是由于微血管功能障碍导致的。这一结果与心肌微血管结构的变化有关,平滑肌细胞增生和内膜纤维化增加导致了动脉管腔狭窄,受损血管周围也伴发心肌纤维化,从而导致灌注参数减低。灌注参数可作为FD的早期疾病标志物[52],而且在鞘脂积累的早期阶段,MBF比初始T1值的降低更敏感,有助于评估ERT的疗效[53]

2.2 CMR在FD的诊断分级和治疗监测中的作用

       FD心肌损伤是一种可逆转的浸润性心脏病变,早期诊断并给予充分治疗时可能会使心肌功能逆转,改善患者预后。CMR应变成像和灌注成像均具有FD心脏病变早期诊断的优势,有助于患者治疗方法的及时选择和预后改善。ERT首次为解决FD潜在的酶缺乏问题提供了机会,是治疗FD的特异性方法。FD患者往往需要每两周进行一次ERT以减缓疾病进展[2]。虽然目前尚未有通过T1 mapping分级诊疗FD以及评估FD治疗效果的临床研究,但由于初始T1值能够反映心肌脂质沉积,因此通过受试者初始T1值改变来评估疾病进展程度以及治疗效果在理论上是可行的。因而,在未来的研究中,使用T1 mapping进行FD疾病分级和效果监测十分具有潜力。

3 总结与展望

       当出现不明原因的向心性、非阻塞性LVH时,应考虑FD的可能性,CMR是评估FD心肌受累的主要方法,在FD的诊断及预后评估中发挥重要的作用。T1 mapping技术在FD的诊断中具有重要价值[14],心肌内鞘脂积累引起的初始T1值减低是FD的一个独特的诊断特征,能够区分FD与其他高血压性心肌病、HCM等具有LVH表现的心肌疾病。应变成像及灌注成像为FD提供了早于LVH的指标,有助于更早期的诊断,而LGE已被证明是最重要的预后指标。然而,目前还没有公认的FD临床风险模型,未来应进行前瞻性多中心研究,以将LGE纳入临床风险预测模型,并指导临床治疗决策。

[1]
ROZENFELD P, FERIOZZI S. Contribution of inflammatory pathways to Fabry disease pathogenesis[J]. Mol Genet Metab, 2017, 122(3): 19-27. DOI: 10.1016/j.ymgme.2017.09.004.
[2]
HAGÈGE A, RÉANT P, HABIB G, et al. Fabry disease in cardiology practice: literature review and expert point of view[J]. Arch Cardiovasc Dis, 2019, 112(4): 278-287. DOI: 10.1016/j.acvd.2019.01.002.
[3]
中国法布雷病专家协作组. 中国法布雷病诊疗专家共识(2021年版)[J]. 中华内科杂志, 2021, 60(4): 321-330. DOI: 10.3760/cma.j.cn112138-20201218-01028.
Chinese Fabry Disease Expert Panel. Expert consensus for diagnosis and treatment of Fabry disease in China (2021)[J]. Chin J Intern Med, 2021, 60(4): 321-330. DOI: 10.3760/cma.j.cn112138-20201218-01028.
[4]
陈楠. 法布雷病:推动早期诊断和治疗,积极改善患者预后[J]. 中华内科杂志, 2021, 60(4): 299-301. DOI: 10.3760/cma.j.cn112138-20210122-00059.
CHEN N. Fabry disease: timely diagnosis and treatment, improve clinical outcome[J]. Chin J Intern Med, 2021, 60(4): 299-301. DOI: 10.3760/cma.j.cn112138-20210122-00059.
[5]
ARENDS M, WANNER C, HUGHES D, et al. Characterization of classical and nonclassical fabry disease: a multicenter study[J]. J Am Soc Nephrol, 2017, 28(5): 1631-1641. DOI: 10.1681/ASN.2016090964.
[6]
KOZOR R, GRIEVE S M, TCHAN M C, et al. Cardiac involvement in genotype-positive Fabry disease patients assessed by cardiovascular MR[J]. Heart, 2016, 102(4): 298-302. DOI: 10.1136/heartjnl-2015-308494.
[7]
NORDIN S, KOZOR R, MEDINA-MENACHO K, et al. Proposed stages of myocardial phenotype development in fabry disease[J]. JACC Cardiovasc Imaging, 2019, 12(8Pt 2): 1673-1683. DOI: 10.1016/j.jcmg.2018.03.020.
[8]
SCHIFFMANN R, HUGHES D A, LINTHORST G E, et al. Screening, diagnosis, and management of patients with Fabry disease: conclusions from a "Kidney Disease: improving Global Outcomes" (KDIGO) Controversies Conference[J]. Kidney Int, 2017, 91(2): 284-293. DOI: 10.1016/j.kint.2016.10.004.
[9]
MEHTA A, RICCI R, WIDMER U, et al. Fabry disease defined: baseline clinical manifestations of 366 patients in the Fabry Outcome Survey[J]. Eur J Clin Invest, 2004, 34(3): 236-242. DOI: 10.1111/j.1365-2362.2004.01309.x.
[10]
WILSON H C, HOPKIN R J, MADUEME P C, et al. Arrhythmia and clinical cardiac findings in children with anderson-fabry disease[J]. Am J Cardiol, 2017, 120(2): 251-255. DOI: 10.1016/j.amjcard.2017.04.016.
[11]
徐杨飞, 杨凯, 刘啸峰, 等. 法布里病累及心脏的临床及MR特征分析[J]. 中华放射学杂志, 2022, 56(2): 168-174. DOI: 10.3760/cma.j.cn112149-20210416-00379.
XU Y F, YANG K, LIU X F, et al. Clinical and cardiac MR characteristics of heart involvement in patients with Fabry disease[J]. Chin J Radiol, 2022, 56(2): 168-174. DOI: 10.3760/cma.j.cn112149-20210416-00379.
[12]
VAN DER TOL L, SMID B E, POORTHUIS B J, et al. A systematic review on screening for Fabry disease: prevalence of individuals with genetic variants of unknown significance[J]. J Med Genet, 2014, 51(1): 1-9. DOI: 10.1136/jmedgenet-2013-101857.
[13]
LENDERS M, BRAND E. Fabry disease - a multisystemic disease with gastrointestinal manifestations[J/OL]. Gut Microbes, 2022, 14(1): 2027852 [2022-04-30]. https://pubmed.ncbi.nlm.nih.gov/35090382/. DOI: 10.1080/19490976.2022.2027852.
[14]
MILLER J J, KANACK A J, DAHMS N M. Progress in the understanding and treatment of Fabry disease[J/OL]. Biochim Biophys Acta Gen Subj, 2020, 1864(1): 129437 [2022-04-30]. https://pubmed.ncbi.nlm.nih.gov/31526868/. DOI: 10.1016/j.bbagen.2019.129437.
[15]
BAIG S, EDWARD N C, KOTECHA D, et al. Ventricular arrhythmia and sudden cardiac death in Fabry disease: a systematic review of risk factors in clinical practice[J]. Europace, 2018, 20(FI2): f153-f161. DOI: 10.1093/europace/eux261.
[16]
ZIMMERMAN S L. Grading cardiac risk in fabry disease: is MRI the answer?[J]. Radiology, 2020, 294(1): 50-51. DOI: 10.1148/radiol.2019192141.
[17]
YANG K, WEI M D, CHEN X Y, et al. Anderson-fabry disease: a rare phenocopy of hypertrophic cardiomyopathy[J/OL]. Eur Heart J Cardiovasc Imaging, 2021, 22(7): e94 [2022-04-30]. https://pubmed.ncbi.nlm.nih.gov/33370430/. DOI: 10.1093/ehjci/jeaa349.
[18]
CHAN R H, MARON B J, OLIVOTTO I, et al. Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy[J]. Circulation, 2014, 130(6): 484-495. DOI: 10.1161/CIRCULATIONAHA.113.007094.
[19]
VAN DER VEEN S J, HOLLAK C E M, VAN KUILENBURG A B P, et al. Developments in the treatment of Fabry disease[J]. J Inherit Metab Dis, 2020, 43(5): 908-921. DOI: 10.1002/jimd.12228.
[20]
YEUNG D F, SIRRS S, TSANG M Y C, et al. Echocardiographic assessment of patients with fabry disease[J]. J Am Soc Echocardiogr, 2018, 31(6): 639-649. DOI: 10.1016/j.echo.2018.01.016.
[21]
VIJAPURAPU R, BRADLOW W, LEYVA F, et al. Cardiac device implantation and device usage in Fabry and hypertrophic cardiomyopathy[J/OL]. Orphanet J Rare Dis, 2022, 17(1): 6 [2022-04-30]. https://pubmed.ncbi.nlm.nih.gov/34991670/. DOI: 10.1186/s13023-021-02133-4.
[22]
CAREDDA G, BASSAREO P P, CHERCHI M V, et al. Anderson-fabry disease: role of traditional and new cardiac MRI techniques[J/OL]. Br J Radiol, 2021, 94(1124): 20210020 [2022-04-30]. https://pubmed.ncbi.nlm.nih.gov/34233483/. DOI: 10.1259/bjr.20210020.
[23]
BOGAERT J, OLIVOTTO I. MR imaging in hypertrophic cardiomyopathy: from magnet to bedside[J]. Radiology, 2014, 273(2): 329-348. DOI: 10.1148/radiol.14131626.
[24]
HANNEMAN K, KARUR G R, WASIM S, et al. Left ventricular hypertrophy and late gadolinium enhancement at cardiac MRI are associated with adverse cardiac events in fabry disease[J]. Radiology, 2020, 294(1): 42-49. DOI: 10.1148/radiol.2019191385.
[25]
KARUR G R, ROBISON S, IWANOCHKO R M, et al. Use of myocardial T1 mapping at 3.0 T to differentiate anderson-fabry disease from hypertrophic cardiomyopathy[J]. Radiology, 2018, 288(2): 398-406. DOI: 10.1148/radiol.2018172613.
[26]
CAMPOREALE A, PIERONI M, PIERUZZI F, et al. Predictors of clinical evolution in prehypertrophic fabry disease[J/OL]. Circ Cardiovasc Imaging, 2019, 12(4): e008424 [2022-04-30]. https://pubmed.ncbi.nlm.nih.gov/30943767/. DOI: 10.1161/CIRCIMAGING.118.008424.
[27]
DEVA D P, HANNEMAN K, LI Q, et al. Cardiovascular magnetic resonance demonstration of the spectrum of morphological phenotypes and patterns of myocardial scarring in Anderson-Fabry disease[J/OL]. J Cardiovasc Magn Reson, 2016, 18: 14 [2022-04-30]. https://pubmed.ncbi.nlm.nih.gov/27036375/. DOI: 10.1186/s12968-016-0233-6.
[28]
MOONEN A, LAL S, INGLES J, et al. Prevalence of Anderson-Fabry disease in a cohort with unexplained late gadolinium enhancement on cardiac MRI[J/OL]. Int J Cardiol, 2020, 304: 122-124 [2022-04-30]. https://pubmed.ncbi.nlm.nih.gov/31987665/. DOI: 10.1016/j.ijcard.2019.12.059.
[29]
NOJIRI A, ANAN I, MORIMOTO S, et al. Clinical findings of gadolinium-enhanced cardiac magnetic resonance in Fabry patients[J]. J Cardiol, 2020, 75(1): 27-33. DOI: 10.1016/j.jjcc.2019.09.002.
[30]
TAO E, MOISEEV A, MERSHINA E, et al. Predictive value of cardiac MRI in patients with fabry disease[J/OL]. Radiology, 2020, 296(2): E123 [2022-04-30]. https://pubmed.ncbi.nlm.nih.gov/32396044/. DOI: 10.1148/radiol.2020200909.
[31]
FADL S A, REVELS J W, REZAI GHARAI L, et al. Cardiac MRI of hereditary cardiomyopathy[J]. Radiographics, 2022, 42(3): 625-643. DOI: 10.1148/rg.210147.
[32]
SCHELBERT E B, MESSROGHLI D R. State of the art: clinical applications of cardiac T1 mapping[J]. Radiology, 2016, 278(3): 658-676. DOI: 10.1148/radiol.2016141802.
[33]
SADO D M, WHITE S K, PIECHNIK S K, et al. Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping[J]. Circ Cardiovasc Imaging, 2013, 6(3): 392-398. DOI: 10.1161/CIRCIMAGING.112.000070.
[34]
HAAF P, GARG P, MESSROGHLI D R, et al. Cardiac T1 Mapping and Extracellular Volume (ECV) in clinical practice: a comprehensive review[J/OL]. J Cardiovasc Magn Reson, 2016, 18(1): 89 [2022-04-30]. https://pubmed.ncbi.nlm.nih.gov/27899132/. DOI: 10.1186/s12968-016-0308-4.
[35]
LIANG L, WANG X, YU Y, et al. T1 mapping and extracellular volume in cardiomyopathy showing left ventricular hypertrophy: differentiation between hypertrophic cardiomyopathy and hypertensive heart disease[J/OL]. Int J Gen Med, 2022, 15: 4163-4173 [2022-04-30]. https://pubmed.ncbi.nlm.nih.gov/35465304/. DOI: 10.2147/IJGM.S350673.
[36]
PASTEUR-ROUSSEAU A, ODOUARD S, SOUIBRI K, et al. Rôle de l'imagerie cardiaque dans les cardiomyopathies infiltratives[J]. Ann De Cardiol D'angéiologie, 2022, 71(2): 63-74. DOI: 10.1016/j.ancard.2022.01.001.
[37]
PICA S, SADO D M, MAESTRINI V, et al. Reproducibility of native myocardial T1 mapping in the assessment of Fabry disease and its role in early detection of cardiac involvement by cardiovascular magnetic resonance[J/OL]. J Cardiovasc Magn Reson, 2014, 16(1): 99 [2022-04-30]. https://pubmed.ncbi.nlm.nih.gov/25475749/. DOI: 10.1186/s12968-014-0099-4.
[38]
PIERONI M, CHIMENTI C, RICCI R, et al. Early detection of Fabry cardiomyopathy by tissue Doppler imaging[J]. Circulation, 2003, 107(15): 1978-1984. DOI: 10.1161/01.CIR.0000061952.27445.A0.
[39]
PERRY R, SHAH R, SAIEDI M, et al. The role of cardiac imaging in the diagnosis and management of anderson-fabry disease[J]. JACC Cardiovasc Imaging, 2019, 12(7Pt 1): 1230-1242. DOI: 10.1016/j.jcmg.2018.11.039.
[40]
SHE J Q, GUO J J, YU Y F, et al. Left ventricular outflow tract obstruction in hypertrophic cardiomyopathy: the utility of myocardial strain based on cardiac MR tissue tracking[J]. J Magn Reson Imaging, 2021, 53(1): 51-60. DOI: 10.1002/jmri.27307.
[41]
MATHUR S, DREISBACH J G, KARUR G R, et al. Loss of base-to-apex circumferential strain gradient assessed by cardiovascular magnetic resonance in Fabry disease: relationship to T1 mapping, late gadolinium enhancement and hypertrophy[J/OL]. J Cardiovasc Magn Reson, 2019, 21(1): 45 [2022-04-30]. https://pubmed.ncbi.nlm.nih.gov/31366357/. DOI: 10.1186/s12968-019-0557-0.
[42]
CHENG-BARON J, CHOW K, PAGANO J J, et al. Quantification of circumferential, longitudinal, and radial global fractional shortening using steady-state free precession cines: a comparison with tissue-tracking strain and application in Fabry disease[J]. Magn Reson Med, 2015, 73(2): 586-596. DOI: 10.1002/mrm.25166.
[43]
AMZULESCU M S, LANGET H, SALOUX E, et al. Head-to-head comparison of global and regional two-dimensional speckle tracking strain versus cardiac magnetic resonance tagging in a multicenter validation study[J/OL]. Circ Cardiovasc Imaging, 2017, 10(11): e006530 [2022-04-30]. https://pubmed.ncbi.nlm.nih.gov/29138230/. DOI: 10.1161/CIRCIMAGING.117.006530.
[44]
EITEL I, STIERMAIER T, LANGE T, et al. Cardiac magnetic resonance myocardial feature tracking for optimized prediction of cardiovascular events following myocardial infarction[J]. JACC Cardiovasc Imaging, 2018, 11(10): 1433-1444. DOI: 10.1016/j.jcmg.2017.11.034.
[45]
BERNARDINI A, CAMPOREALE A, PIERONI M, et al. Atrial dysfunction assessed by cardiac magnetic resonance as an early marker of fabry cardiomyopathy[J]. JACC Cardiovasc Imaging, 2020, 13(10): 2262-2264. DOI: 10.1016/j.jcmg.2020.05.011.
[46]
LABOMBARDA F, SALOUX E, MILESI G, et al. Loss of base-to-apex circumferential strain gradient: a specific pattern of Fabry cardiomyopathy?[J]. Echocardiography, 2017, 34(4): 504-510. DOI: 10.1111/echo.13496.
[47]
WANG S C, TAPIA D, KIMONIS V E, et al. Regional strain pattern and correlation with cardiac magnetic resonance imaging in fabry disease[J]. J Cardiovasc Echogr, 2021, 31(3): 131-136. DOI: 10.4103/jcecho.jcecho_119_20.
[48]
BROWN L A E, ONCIUL S C, BROADBENT D A, et al. Fully automated, inline quantification of myocardial blood flow with cardiovascular magnetic resonance: repeatability of measurements in healthy subjects[J/OL]. J Cardiovasc Magn Reson, 2018, 20(1): 48 [2022-04-30]. https://pubmed.ncbi.nlm.nih.gov/29983119/. DOI: 10.1186/s12968-018-0462-y.
[49]
KELLMAN P, HANSEN M S, NIELLES-VALLESPIN S, et al. Myocardial perfusion cardiovascular magnetic resonance: optimized dual sequence and reconstruction for quantification[J/OL]. J Cardiovasc Magn Reson, 2017, 19(1): 43 [2022-04-30]. https://pubmed.ncbi.nlm.nih.gov/28385161/. DOI: 10.1186/s12968-017-0355-5.
[50]
CHIMENTI C, MORGANTE E, TANZILLI G, et al. Angina in fabry disease reflects coronary small vessel disease[J]. Circ Heart Fail, 2008, 1(3): 161-169. DOI: 10.1161/CIRCHEARTFAILURE.108.769729.
[51]
KNOTT K D, AUGUSTO J B, NORDIN S, et al. Quantitative myocardial perfusion in fabry disease[J/OL]. Circ Cardiovasc Imaging, 2019, 12(7): e008872 [2022-04-30]. https://pubmed.ncbi.nlm.nih.gov/31269811/. DOI: 10.1161/CIRCIMAGING.119.008872.
[52]
ENGBLOM H, XUE H, AKIL S, et al. Fully quantitative cardiovascular magnetic resonance myocardial perfusion ready for clinical use: a comparison between cardiovascular magnetic resonance imaging and positron emission tomography[J/OL]. J Cardiovasc Magn Reson, 2017, 19(1): 78 [2022-04-30]. https://pubmed.ncbi.nlm.nih.gov/29047385/. DOI: 10.1186/s12968-017-0388-9.
[53]
MOON J C, SACHDEV B, ELKINGTON A G, et al. Gadolinium enhanced cardiovascular magnetic resonance in Anderson-Fabry disease. Evidence for a disease specific abnormality of the myocardial interstitium[J]. Eur Heart J, 2003, 24(23): 2151-2155. DOI: 10.1016/j.ehj.2003.09.017.

上一篇 基于功能磁共振成像技术的颈椎病中枢重塑机制研究进展
下一篇 4D Flow MRI在肥厚型心肌病中的应用研究进展
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2