分享:
分享到微信朋友圈
X
临床研究
磁共振多回波DIXON技术对2型糖尿病患者骨骼肌脂肪含量的定量评估
余庆龄 周贝贝 张新茹 丘倩怡 阳益 张晓东

Cite this article as: YU Q L, ZHOU B B, ZHANG X R, et al. Quantitative assessment of skeletal muscle fat content in type 2 diabetic patients by magnetic resonance multi-echo DIXON technique[J]. Chin J Magn Reson Imaging, 2024, 15(1): 145-151.本文引用格式:余庆龄, 周贝贝, 张新茹, 等. 磁共振多回波DIXON技术对2型糖尿病患者骨骼肌脂肪含量的定量评估[J]. 磁共振成像, 2024, 15(1): 145-151. DOI:10.12015/issn.1674-8034.2024.01.023.


[摘要] 目的 利用磁共振多回波水脂分离(multi-echo DIXON, mDIXON)技术分析2型糖尿病(type 2 diabetes mellitus, T2DM)患者大腿肌肉和椎旁肌肉的脂肪含量与健康对照组之间的差异,并探究其与病程、甘油三酯葡萄糖(triglyceride and glucose, TyG)指数等的关系。材料和方法 本研究前瞻性招募42例临床诊断为T2DM的患者,并招募44例年龄、性别相匹配的健康志愿者作为对照组。所有受试者接受大腿和腹部mDIXON序列扫描,用独立样本t检验比较两组受试者各肌肉的脂肪分数(fat fraction, FF)值的差异并运用多元线性回归和逻辑回归的方法分析各肌肉FF值与病程和TyG指数等的相关性。结果 T2DM组大腿各肌群FF值均高于对照组,腰方肌FF值显著高于健康对照组(t=3.402, P<0.001),其余椎旁肌肉FF值在两组间的差异无统计学意义(P>0.05)。T2DM组女性的大腿肌群FF值均显著高于男性(P<0.001),T2DM组的股外侧肌、股内侧肌、股直肌的FF值与病程呈正相关(r=0.057、0.073、0.125,P均<0.001)。竖脊肌和股外侧肌的FF值升高是TyG指数升高的危险因素(OR=1.934,P<0.001;OR=2.516,P<0.001)。结论 mDIXON序列具有较好的评估骨骼肌脂肪含量的能力;T2DM患者骨骼肌脂肪含量高于健康人,结合病程、TyG指数等进一步分析T2DM患者骨骼肌脂肪含量的变化,有利于指导临床对T2DM患者的诊疗。
[Abstract] Objective Using the magnetic resonance multi-echo DIXON (mDIXON) technique analyze the differences between thigh muscle and paravertebral muscle fat content between patients with type 2 diabetes mellitus (T2DM) and healthy controls and explore the relationship of each skeletal muscle fat content with duration, triglyceride glucose (TyG) index, and other indicators.Materials and methods The study prospectively enrolled 42 clinically diagnosed T2DM patients and 44 age, gender, and recruitment-matched healthy volunteers as the control group. All subjects underwent thigh and abdomen mDIXON sequence scanning. An independent-sample t-test was employed to compare the fat fraction (FF) values of each muscle group between the two groups. Multivariate linear regression and logistic regression analyses were conducted to assess the correlation between FF values, duration of diabetes, and TyG index.Results The FF values of all thigh muscle groups in the T2DM group were higher than those in the control group, and the FF value of the quadratus lumborum was significantly higher than that in the healthy control group (t=3.402, P<0.001). There was no significant difference in the FF value of the other paravertebral muscles between the two groups (P>0.05). The thigh muscle FF values of females in the T2DM group were significantly higher than those of males (P<0.001). The FF values of vastus lateralis, vastus medialis, and rectus femoris in the T2DM group were positively correlated with the course of the disease (r=0.057, 0.073, 0.125, P<0.001). Increased FF values of erector spinae and vastus lateralis are a risk factor for a high TyG index (OR=1.934, P<0.001; OR=2.516, P<0.001).Conclusions The mDIXON sequence has a good ability to evaluate skeletal muscle fat content. Skeletal muscle fat content is higher in patients with T2DM than in healthy people. Combined with the course of the disease and TyG index, further analysis of the changes in skeletal muscle fat content in T2DM patients is helpful to guide the clinical diagnosis and treatment of T2DM patients.
[关键词] 2型糖尿病;骨骼肌;脂肪定量;磁共振成像
[Keywords] type 2 diabetes mellitus;skeletal muscle;fat quantification;magnetic resonance imaging

余庆龄 1   周贝贝 1, 2   张新茹 1   丘倩怡 1   阳益 1   张晓东 1*  

1 南方医科大学第三附属医院(广东省骨科研究院)影像科,广州 510630

2 中山大学第七附属医院影像科,深圳 517108

通信作者:张晓东,E-mail:ddautumn@126.com

作者贡献声明::张晓东设计本研究的方案,对稿件的重要内容进行修改,获得了南方医科大学第三附属医院院长基金项目资助;余庆龄起草和撰写稿件,分析并解释数据;周贝贝参与研究的设计和稿件的起草,采集研究数据,参与论文重要内容的修改;张新茹采集研究数据,参与论文重要内容的修改;丘倩怡测量研究数据,参与论文重要内容的修改;阳益分析研究数据,参与论文重要内容的修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 南方医科大学第三附属医院院长基金项目 YM2021012
收稿日期:2023-04-27
接受日期:2024-01-04
中图分类号:R445.2  R587.1 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.01.023
本文引用格式:余庆龄, 周贝贝, 张新茹, 等. 磁共振多回波DIXON技术对2型糖尿病患者骨骼肌脂肪含量的定量评估[J]. 磁共振成像, 2024, 15(1): 145-151. DOI:10.12015/issn.1674-8034.2024.01.023.

0 引言

       2型糖尿病(type 2 diabetes mellitus, T2DM)是一种代谢性疾病,由于多种原因引起胰岛素分泌不足或发生胰岛素抵抗,从而导致血糖水平升高。T2DM患者常见的一种并发症是骨骼肌减少症(肌少症),其特征为肌肉质量减少伴有大量异位脂肪的浸润[1]。当异位脂肪含量上升时,过量脂肪脂解产生大量游离脂肪酸使机体发生糖代谢、血脂代谢等异常[2]。骨骼肌是胰岛素摄取葡萄糖的主要部位之一,其胰岛素抵抗程度随脂肪含量的增加而加重,继而发生肌细胞坏死,肌肉萎缩[3, 4]。近年来众多研究证实基于多回波采集(6回波)、7峰值脂肪模型的磁共振多回波水脂分离(multi-echo DIXON, mDIXON)技术能够有效分离水和脂肪图像,并计算出脂肪分数(fat fraction, FF),成为定量检测脂肪的重要方法[5, 6]。mDIXON技术不仅与磁共振波谱测量的FF值具有良好一致性,且覆盖的空间面积更大,能更好定量各类组织中的脂肪含量,广泛应用于肌肉组织脂肪含量的测量[7, 8, 9]。甘油三酯葡萄糖(triglyceride and glucose, TyG)指数是反映胰岛素抵抗的常用临床指标,其值越高,患者血糖水平越高,胰岛素抵抗情况越严重。临床研究证实,TyG指数是脑血管疾病的危险因素,也与心血管系统相关疾病及其触发因素密切相关[10, 11]。已有研究证实T2DM患者的肌肉FF值高于健康人群,然而目前对不同肌肉脂肪沉积的定量研究仍不足,尚无研究通过影像学方法检测骨骼肌脂肪含量对胰岛素抵抗的影响。

       本研究旨在使用mDIXON技术评估T2DM患者骨骼肌脂肪含量变化,并探讨其与患者性别、病程及TyG指数的相关性。本研究有望作为无创性影像学标志物为糖尿病患者中严重胰岛素抵抗筛查以及糖尿病合并的肌肉减少症等肌肉相关病变的诊断提供依据。

1 材料与方法

1.1 研究对象

       前瞻性招募2022年3月至2023年10月南方医科大学第三附属医院就诊的86名受试者,其中42例临床诊断为T2DM[12]。纳入标准:(1)临床诊断为T2DM且病程在一年及以上;(2)不伴有腔隙性脑梗死、心肌梗死等心脑血管疾病;(3)不伴有糖尿病足等下肢相关并发症。排除标准:(1)既往有腰椎或大腿手术的患者;(2)有肌肉相关疾病史的患者;(3)服用可影响肌肉代谢或功能药物者[13];(4)正处于传染性疾病活动期的患者;(5)有MRI扫描禁忌证患者。所有患者均为住院患者,在入院24 h内完成血糖、血脂的检查,24~48 h内完成MRI检查。另外44例为健康志愿者,纳入标准:与T2MD组年龄、性别匹配的健康志愿者;排除标准:(1)服用可影响肌肉代谢或功能药物者;(2)有MRI扫描禁忌证者。所有受试者都没有进行定期锻炼,且7天内无剧烈运动史[14]

       本研究遵守《赫尔辛基宣言》,经南方医科大学第三附属医院伦理委员会批准,批准文号:2023-伦审-009。全体受试者均在检查前被告知相关注意事项并签署知情同意书。

1.2 MRI设备及检查方法

       所有受试者均采用 3.0 T MRI扫描仪(Achieva 3.0 T,飞利浦医疗,Best,荷兰)进行中上腹部和大腿扫描,采用8通道相控阵腹部线圈及体部相控阵线圈辅助成像。受试者取仰卧位,脚先进,在上腹部扫描时加呼吸门控,需屏气15 s(受试者在检查前接受呼吸训练)。上腹部扫描范围上至肝脏上缘、下至第三腰椎下缘,大腿扫描范围上至股骨头上缘,下至股骨外上髁。检查序列及参数:横轴位快速自旋回波(turbo spin echo, TSE)T1WI序列(重复时间500 ms,回波时间20 ms,视野41.3 cm×33.6 cm,翻转角90°,层厚3 mm)、T2W_TSE序列(重复时间2 357 ms,回波时间40 ms,视野34.5 cm×30 cm,翻转角90°,层厚5 mm)、T2W_SPAIR序列(重复时间4 921 ms,回波时间80 ms,视野34.5 cm×30.0 cm,翻转角90°,层厚3 mm)及mDIXON序列(重复时间5.60 ms,回波时间0.97、2.12、3.27、4.42、5.57 ms,视野41.3 cm×33.6 cm,翻转角度3°,层厚 6 mm)。两部位的mDIXON序列总共用时为28 s,扫描后可获得七种对比度,主要包括同相位、反相位、水图、脂肪图和FF图等。

1.3 椎旁肌和大腿肌的脂肪含量测量

       扫描结束后由2名放射科副主任医师(分别有8年和10年诊断经验)在飞利浦公司提供的设备配套后处理软件(InterlliSpaceTM Portal, Philip)的FF图上(参考T1WI解剖)手动独立勾画感兴趣区(region of interest, ROI)。椎旁肌和腹直肌选择第三腰椎体层面,分别勾画腰大肌、腰方肌、竖脊肌群、腹直肌;大腿肌肉选择股骨中段层面,分别勾画股外侧肌、股中间肌,股内侧肌、股直肌、股二头肌、半腱肌、半膜肌、股薄肌、缝匠肌,记录每一块肌肉的FF值[15, 16]图1)。ROI勾画的原则是尽量避开大的血管和化学位移产生的伪影,左右两侧勾画的面积尽量一致,勾画的轮廓距离肌肉外缘2~3 mm。2名放射科医师测得的结果分别记录为FF1与FF2。如出现分歧则以第三位放射科医师(上一级具有15年诊断经验的主任医师)再次测量为准。

图1  大腿中段各肌肉和第三腰椎层面椎旁肌肉脂肪分数勾画示意图。1A~1B:男,49岁,健康志愿者大腿中段以及第三腰椎层面的T1WI图像,不同颜色的区域代表不同的肌肉;1C~1F:女,68岁,2型糖尿病患者,1C为大腿中段脂肪分数(FF)图,1D为FF的伪彩图,可见大腿肌肉蓝紫相间,局部出现绿色,1E为第三腰椎层面FF图,1F为FF的伪彩图,可见部分椎旁肌肉呈黄色;1G~1J:女,70岁,健康志愿者,1G为大腿中段FF图,1H为FF的伪彩图,大腿肌肉以紫色为主,1I为第三腰椎层面FF图,1J为FF的伪彩图,椎旁肌肉以蓝紫色为主。
Fig. 1  Schematic delineation of the fat fraction of each muscle in the mid-thigh and paravertebral muscle at the third lumbar level. 1A-1B: Male, 49-year-old, the T1WI images of the mid-thigh as well as the third lumbar vertebra level of a healthy with different colored areas representing different muscles; 1C-1F: Female, 68-year-old, the fat fraction (FF) map of the middle thigh for T2DM patients, 1C is the FF map of the middle thigh, 1D is the corresponding false color map, showing blue and purple phases of the thigh muscle, and green in the local area, 1E is the FF map at the third lumbar vertebra level, 1F is the false color map at the corresponding level, some paravertebral muscles are yellow; 1G-1J: Female, 70-year-old, a healthy volunteer, 1G is the FF image of the middle thigh, 1H is the corresponding false color image, and the thigh muscles are mainly purple, 1I is the FF image of the third lumbar vertebra level, 1J is the corresponding false color image, and the paraspinal muscles are mainly blue and purple.

1.4 临床数据和实验室检查记录

       在图像采集期间记录受检者的年龄、性别、身高、体质量、药物使用等信息,计算受检者的身体质量指数(body mass index, BMI),BMI=体质量(kg)/身高(m)2。利用sliceOmatic软件半自动勾画第三腰椎平面的内脏脂肪(viseral adipose tissue, VAT)和皮下脂肪(subcutaneus adipose tissue, SAT),记录其面积。记录T2DM患者的血糖、甘油三酯、总胆固醇、高密度脂蛋白(high-density lipoprotein, HDL)、低密度脂蛋白(low-density lipoprotein, LDL)等实验室检查指标以及药物使用情况。通过空腹血糖和甘油三酯的数据计算TyG指数,TyG指数=ln[甘油三酯(mg/dl)×血浆葡萄糖(mg/dl)/2]。

1.5 统计学分析

       采用SPSS 25.0软件进行统计学分析。所有数据进行正态分布检验,定量资料符合正态分布以均数±标准差(x¯±s)表示,不符合正态分布的定量资料用中位数(上下四分位数)表示,P<0.05表示差异有统计学意义。采用Pearson检验和Bland-Altman法分析两次勾画ROI测量FF值结果的一致性,采用卡方检验比较两组性别的差异,定量数据服从正态分布的采用独立样本t检验,不服从正态分布的采用曼-惠特尼U检验,用Kruskal-Wallis H检验分析不同病程及TyG指数亚组之间的差异,并用多元线性回归和多元逻辑回归分析临床指标与FF值之间的相关性。

2 结果

2.1 一般资料

       纳入的42名T2DM患者中,男25名,女17名,年龄31~70岁,44名健康志愿者中男27名,女17名,年龄30~73岁。两组的年龄、性别差异无统计学意义(P>0.05)。T2DM组和健康对照组的BMI,SAT面积和VAT面积见表1。T2DM组的血糖、甘油三酯、总胆固醇、HDL、LDL分别为(10.87±5.94)mmol/L、(2.12±2.44)mmol/L、(5.08±1.53)mmol/L、(1.10±0.37)mmol/L、(2.97±1.09)mmol/L,服用降脂药24人,服用格列类药物25人,服用列汀类药物11人,所有患者均接受胰岛素皮下注射治疗。

表1  人口统计数据
Tab. 1  Demographics of the population

2.2 测得FF值的相关性和一致性分析

       Pearson检验分析表明,两名放射科医师测量的大腿和椎旁肌肉FF值均具有高度相关性(r=0.962、0.973,P<0.001)(图2A2C)。Bland-Altman法一致性分析结果显示,两名放射科医师测量的大腿肌肉和椎旁肌肉FF值平均差值分别为0.15和0.17,95%置信区间为-1.79~2.10和-2.11~2.51(图2B2D),提示测量结果一致性较好。

图2  两名放射科医师测量的肌肉FF值的相关性和一致性分析。2A:两名放射医师勾画ROI测得大腿肌肉FF值散点图,图中实线为最佳拟合,Pearson相关性分析结果显示两种测量结果呈线性关系,Y=0.9635X+0.1628(r=0.962,P<0.001);2B:Bland-Altman分析图,图中较细的虚线代表两名放射医师勾画ROI测得大腿肌肉FF值的差值均数,96.11%的差值位于95%一致性区间;2C:两名放射医师勾画ROI测得椎旁肌肉FF值散点图,图中实线为最佳拟合,Pearson相关性分析结果显示两种测量结果呈线性关系,Y=1.002X-0.1857(r=0.973,P<0.001);2D:Bland-Altman分析图,虚线代表两名放射医师勾画ROI测得椎旁肌肉FF值的差值均数,97.5%的差值位于95%一致性区间。FF:脂肪分数;ROI:感兴趣区。
Fig. 2  Correlation and consistency analysis of muscle FF values measured by two radiologists. 2A: The solid line in the plot is the best fit, Pearson correlation analysis show that the two measurement results have a linear relationship, Y=0.9635X+0.1628 (r=0.962, P<0.001); 2B: Bland-Altman analysis, the thin dashed line in the figure represents the mean difference of FF values of thigh muscle measure by two radiologists in ROI, and 96.11% of the difference is in the 95% consistency interval; 2C: The FF values of the paraspinal muscles are measured by two radiologists, the solid line in the figure is the best fit, Pearson correlation analysis show that the two measurement results are linear, Y=1.002X-0.1857 (r=0.973, P<0.001); 2D: Bland-Altman analysis, the thin dash line represents the mean difference of the FF values of the paraspinal muscles measure by the two radiologists in the ROI, and 97.5% of the difference is in the 95% consistency interval. FF: fat fraction; ROI: region of interest.

2.3 两组肌肉FF值差异的比较结果

       在T2DM组中,女性受试者的所有大腿肌群以及腰方肌、竖脊肌的FF值均显著高于男性受试者(P均<0.001),在健康对照组中,男性受试者的腰大肌、腰方肌FF值显著高于女性受试者(P均<0.05)(表2)。另外,T2DM组的股外侧肌、股中间肌、股内侧肌、股直肌、股薄肌、半膜肌、半腱肌、股二头肌的FF值分别为(8.59±2.93)%、(8.08±3.62)%、(7.39±3.29)%、(7.59±3.71)%、(11.15±4.51)%、(13.65±13.67)%、(13.41±12.69)%、(13.35±12.61)%,健康对照组的股外侧肌、股中间肌、股内侧肌、股直肌、股薄肌、半膜肌、半腱肌、股二头肌的FF值分别为(7.56±2.52)%、(5.34±1.75)%、(4.47±1.68)%、(4.55±1.85)%、(9.12±3.62)%、(8.53±3.27)%、(8.48±4.06)%、(8.48±3.33)%,两组间的大腿肌肉FF值均存在显著差异(P<0.001;图3),腰方肌FF值在T2DM组显著高于健康对照组,其余腰腹部肌肉FF值的差异没有统计学意义。

图3  两组间不同肌肉FF值的差异条形图。大腿各肌肉FF值均显著高于健康对照组(P<0.001),腰方肌的FF值显著高于健康对照组(t=3.402,P<0.001)。**表示P<0.01,*** 表示P<0.001,ns表示P>0.05。FF:脂肪分数;T2DM:2型糖尿病。
Fig. 3  Bar plots of differences in FF values between the two groups for different muscles. The FF values of all thigh muscles are significantly higher than that in the healthy control group (P<0.001) and the FF values of the quadratus lumborum muscle are significantly higher compared to the control group (t=3.402, P<0.001). ** is P<0.01, *** is P<0.001, ns is P>0.05. FF: fat fraction; T2DM: type 2 diabetes mellitus.
表2  T2DM组和健康对照组男女肌肉FF值差异
Tab. 2  Difference of muscle FF value between male and female in T2DM group and healthy control group

2.4 各肌肉FF值与病程以及胰岛素抵抗指标的关系

       T2DM患者的股内侧肌、股直肌、股薄肌、半膜肌、半腱肌、股二头肌、缝匠肌FF值在不同病程中存在显著差异,如表3。结合甘油三酯、HDL等临床参数进行多元线性回归,我们发现病程与股外侧肌、股中间肌、股直肌的FF值正相关(r=0.057、0.073、0.125,P均<0.001)。不同四分位间距(interquartile range, IQR)的TyG指数对应肌肉FF值均存在差异,采用逐步回归的多元逻辑回归分析,结果如表4,竖脊肌和股外侧肌的FF值升高是高TyG指数的危险因素。

表3  不同病程、不同四分位间距的TyG指数患者肌肉FF值的Kruskal-Wallis H检验
Tab. 3  The Kruskal-Wallis H test of muscle FF value in patients with different course of disease and different interquartile range of TyG index
表4  逐步回归的多元逻辑回归分析TyG指数的危险因素
Tab. 4  Multiple logistic regression with stepwise regression is used to analyze the risk factors of TyG index

3 讨论

       近年来,T2DM的发病率持续上升,成为影响人们健康的主要代谢性疾病之一。肌肉脂肪异常沉积被认为在T2DM的发展中至关重要,骨骼肌脂肪含量的变化以及肌肉组织内的脂质分布与T2DM的发展密切相关。本研究利用磁共振mDIXON技术定量测量大腿肌肉和椎旁肌肉的脂肪含量,证实了糖尿病组大腿肌群脂肪含量显著高于健康对照组,骨骼肌脂肪含量在不同性别之间有显著差异,且与病程、TyG指数等存在相关性,进一步阐明了骨骼肌脂肪沉积与T2DM之间的关系。

3.1 T2DM对于肌肉脂肪含量的影响存在性别差异的原因分析

       本研究结果显示,在T2DM组中所有女性大腿肌肉的FF值均高于男性,且相对于健康对照组显著性有所提升。T2DM对肌肉的脂肪浸润的影响在女性中更显著,可能因为T2DM通过影响雌激素的分泌,抑制脂质的分解,从而出现脂肪的沉积。女性的骨骼肌表达高水平的脂肪酸运输和合成的相关基因,如激素敏感脂肪酶、脂蛋白脂肪酶等,雌激素可以增加脂肪酶的活性从而增强骨骼肌脂类的代谢[17]。有研究发现T2DM人群中,虚弱的患病率在女性中较高,可能与本研究提示的肌肉脂肪含量上升有关[18]。不同性别之间肌肉的脂肪分布存在显著差异,此前研究发现,男性的脂肪通常在躯干和腹部堆积,女性的脂肪组织更易在臀部和大腿周围堆积[19, 20]。SHI等[21]使用双能X线吸收法对注射胰岛素的住院患者的全身肌肉量进行检测,发现男性低肌肉量的患病率高于女性。

3.2 T2DM患者大腿肌肉脂肪含量的分析

       腿部肌肉对维持人体姿势具有重要作用,GREVE等[16]利用mDIXON序列比较T2DM和健康志愿者大腿肌肉的FF值,发现T2DM组仅股外侧肌与健康对照组之间存在显著差异(P<0.05),可能是由于样本量太小导致其他各肌群之间的差异不显著。本研究扩大了样本量,发现大腿各肌群的FF值在T2DM患者和健康人之间均存在显著差异,提示大腿肌肉脂肪沉积在T2DM患者中更加明显。另外,本研究发现无论是否患有T2DM,后外侧肌群(股二头肌、半腱肌、半膜肌)的FF值显著高于前外侧肌群(股四头肌),提示大腿前侧的伸肌肌群通过拉伸产生的能量消耗对脂肪的浸润存在影响[22]。MORI等[23]、VITALE等[24]证实大腿肌肉力量的减弱会使患者生活质量下降,跌倒风险明显上升,FF值的测量有助于预测T2DM患者发生跌倒的风险。

3.3 T2DM患者椎旁肌肉脂肪含量的分析

       椎旁肌肉是骨骼肌减少的常用评价指标,也被应用于评估早期骨骼肌的脂肪浸润情况。15.7%的晚期糖尿病患者出现肌少症,表现为椎旁肌肉质量指数显著降低,肌肉的脂肪浸润早于肌肉的萎缩减少的发生并分泌炎性因子协同肌肉萎缩[25]。有研究指出低T2DM患病率与优质肌肉数量相关,可见T2DM和肌肉脂肪浸润之间存在相互作用,其中一种疾病的存在可能会增加另一种疾病的风险[26]。KIEFER等[15]的研究利用磁共振六回波mDIXON序列测量T2DM组,T2DM前期组和健康对照组共349人在第三腰椎水平椎旁各肌肉的FF值,发现T2DM组和T2DM前期组的肌肉FF值均显著高于健康对照组。本研究纳入两组年龄、性别相匹配且健康组BMI、SAT和VAT显著高于T2DM组(P<0.05),排除异位脂肪沉积的影响,结果发现两组之间所有椎旁肌肉仅腰方肌的FF值差异有统计学意义,可能椎旁肌内脂肪含量受VAT、SAT等的影响较大[27]。但KIEFER等[15]的研究指出浸润的脂肪含量与血糖浓度没有独立相关性,随后OGAMA等[28]发现血糖波动幅度与肌少症的发生独立相关。

3.4 T2DM患者的病程,胰岛素抵抗指标与肌肉脂肪含量的关系

       目前影像学关于骨骼肌脂肪沉积的评估主要围绕肌内、肌间脂肪的面积分析,结合临床病程进行相关的研究较少。本研究用多元线性回归分析发现病程与大腿肌肉的脂肪含量成正比,随着病程的增加,股直肌的FF值不断增加。此前的研究证明病程是T2DM并发肌少症的重要影响因素[29]。本研究分析TyG指数在Q2、Q3区间患者的肌肉脂肪含量,发现竖脊肌和股外侧肌脂肪浸润是胰岛素抵抗的危险因素,但在TyG指数最高区间没有发现肌肉的脂肪浸润呈现为危险因素。HU等[30]的研究指出经多因素分析后女性受试者的TyG指数与低肌肉质量没有关系,另外还有研究通过计算高血压患者的TyG指数发现胰岛素抵抗对肌肉质量的负面影响[31]。胰岛素抵抗对肌肉的作用是双向的,肌肉坏死产生的介质可能反过来影响脂肪细胞,从而表现出脂肪沉积减少[25, 32]。此外,CAO等[33]的研究发现是血浆脂肪酸清除率增加,而不是脂肪酸浓度增加与肌肉胰岛素敏感性呈负相关。

3.5 本研究的局限性

       本研究存在一定的局限性:第一,由于本研究未对受试者进行随访,故无法分析肌肉脂肪沉积对糖尿病患者胰岛素抵抗的动态影响;第二,本研究仅使用TyG指数一个指标,未联合胰岛素抵抗指数以及糖化血红蛋白共同反映胰岛素抵抗的情况,后续随访可完善相应资料,进行更全面的分析;第三,本研究样本量有限,无法对不同年龄段的人群进行分层比较,未来可加大样本量,比较不同年龄段的糖尿病患者的肌肉脂肪沉积对胰岛素抵抗的影响。

4 结论

       综上所述,T2DM患者较健康人的骨骼肌脂肪含量更高,磁共振mDIXON序列可较好地评估机体骨骼肌脂肪含量,其定量参数FF值可作为无创性影像学指标为临床对T2DM患者的诊断、治疗和管理提供指导。

[1]
CHO Y, PARK H S, HUH B W, et al. Prevalence and risk of diabetic complications in young-onset versus late-onset type 2 diabetes mellitus[J/OL]. Diabetes Metab, 2022, 48(6): 101389 [2023-05-01]. https://pubmed.ncbi.nlm.nih.gov/36255061/. DOI: 10.1016/j.diabet.2022.101389.
[2]
YANG T, LIU Y J, LI L, et al. Correlation between the triglyceride-to-high-density lipoprotein cholesterol ratio and other unconventional lipid parameters with the risk of prediabetes and Type 2 diabetes in patients with coronary heart disease: a RCSCD-TCM study in China[J/OL]. Cardiovasc Diabetol, 2022, 21(1): 93 [2023-05-01]. https://pubmed.ncbi.nlm.nih.gov/35659300/. DOI: 10.1186/s12933-022-01531-7.
[3]
BRØNS C, GRUNNET L G. MECHANISMS IN ENDOCRINOLOGY: skeletal muscle lipotoxicity in insulin resistance and type 2 diabetes: a causal mechanism or an innocent bystander?[J]. Eur J Endocrinol, 2017, 176(2): R67-R78. DOI: 10.1530/EJE-16-0488.
[4]
D'SOUZA K, MERCER A, MAWHINNEY H, et al. Whey peptides stimulate differentiation and lipid metabolism in adipocytes and ameliorate lipotoxicity-induced insulin resistance in muscle cells[J/OL]. Nutrients, 2020, 12(2): 425 [2023-05-01]. https://pubmed.ncbi.nlm.nih.gov/32041341/. DOI: 10.3390/nu12020425.
[5]
YU F Y, FAN Y P, SUN H, et al. Intermuscular adipose tissue in Type 2 diabetes mellitus: Non-invasive quantitative imaging and clinical implications[J/OL]. Diabetes Res Clin Pract, 2022, 187: 109881 [2023-05-01]. https://pubmed.ncbi.nlm.nih.gov/35483545/. DOI: 10.1016/j.diabres.2022.109881.
[6]
DIECKMEYER M, INHUBER S, SCHLÄGER S, et al. Association of thigh muscle strength with texture features based on proton density fat fraction maps derived from chemical shift encoding-based water-fat MRI[J/OL]. Diagnostics, 2021, 11(2): 302 [2023-05-01]. https://pubmed.ncbi.nlm.nih.gov/33668624/. DOI: 10.3390/diagnostics11020302.
[7]
FORBES S C, WALTER G A, ROONEY W D, et al. Skeletal muscles of ambulant children with Duchenne muscular dystrophy: validation of multicenter study of evaluation with MR imaging and MR spectroscopy[J]. Radiology, 2013, 269(1): 198-207. DOI: 10.1148/radiol.13121948.
[8]
LI J F, WANG Y J, ZHANG X S, et al. Associations of muscle size and fatty infiltration with bone mineral density of the proximal femur bone[J/OL]. Front Endocrinol, 2022, 13: 990487 [2023-05-01]. https://pubmed.ncbi.nlm.nih.gov/36237187/. DOI: 10.3389/fendo.2022.990487.
[9]
YU F Y, HE B, CHEN L, et al. Intermuscular fat content in young Chinese men with newly diagnosed type 2 diabetes: based on MR mDIXON-quant quantitative technique[J/OL]. Front Endocrinol, 2021, 12: 536018 [2023-05-01]. https://pubmed.ncbi.nlm.nih.gov/33868161/. DOI: 10.3389/fendo.2021.536018.
[10]
RUJIRACHUN P, WATTANACHAYAKUL P, PHICHITNITIKORN P, et al. Association of premature ventricular complexes and risk of ischemic stroke: a systematic review and meta-analysis[J]. Clin Cardiol, 2021, 44(2): 151-159. DOI: 10.1002/clc.23531.
[11]
JIAO Y, SU Y K, SHEN J, et al. Evaluation of the long-term prognostic ability of triglyceride-glucose index for elderly acute coronary syndrome patients: a cohort study[J/OL]. Cardiovasc Diabetol, 2022, 21(1): 3 [2023-05-01]. https://pubmed.ncbi.nlm.nih.gov/34991602/. DOI: 10.1186/s12933-021-01443-y.
[12]
张茜, 王战建, 周亚茹, 等. 2022版«中国老年2型糖尿病防治临床指南»专家解读[J]. 疑难病杂志, 2022, 21(5): 445-449. DOI: 10.3969/j.issn.1671-6450.2022.05.001.
ZHANG Q, WANG Z J, ZHOU Y R, et al. Expert interpretation of 2022 edition of clinical guidelines for the prevention and treatment of type 2 diabetes in the elderly in China[J]. Chin J Difficult Complicat Cases, 2022, 21(5): 445-449. DOI: 10.3969/j.issn.1671-6450.2022.05.001.
[13]
MASSIMINO E, IZZO A, RICCARDI G, et al. The impact of glucose-lowering drugs on sarcopenia in type 2 diabetes: current evidence and underlying mechanisms[J/OL]. Cells, 2021, 10(8): 1958 [2023-05-01]. https://pubmed.ncbi.nlm.nih.gov/34440727/. DOI: 10.3390/cells10081958.
[14]
OTSUKA Y, YAMADA Y, MAEDA A, et al. Effects of resistance training intensity on muscle quantity/quality in middle-aged and older people: a randomized controlled trial[J]. J Cachexia Sarcopenia Muscle, 2022, 13(2): 894-908. DOI: 10.1002/jcsm.12941.
[15]
KIEFER L S, FABIAN J, ROSPLESZCZ S, et al. Assessment of the degree of abdominal myosteatosis by magnetic resonance imaging in subjects with diabetes, prediabetes and healthy controls from the general population[J]. Eur J Radiol, 2018, 105: 261-268. DOI: 10.1016/j.ejrad.2018.06.023.
[16]
GREVE T, BURIAN E, ZOFFL A, et al. Regional variation of thigh muscle fat infiltration in patients with neuromuscular diseases compared to healthy controls[J]. Quant Imaging Med Surg, 2021, 11(6): 2610-2621. DOI: 10.21037/qims-20-1098.
[17]
IKEDA K, HORIE-INOUE K, INOUE S. Functions of estrogen and estrogen receptor signaling on skeletal muscle[J/OL]. J Steroid Biochem Mol Biol, 2019, 191: 105375 [2023-05-01]. https://pubmed.ncbi.nlm.nih.gov/31067490/. DOI: 10.1016/j.jsbmb.2019.105375.
[18]
NISHIMURA A, HARASHIMA S I, HOSODA K, et al. Sex-related differences in frailty factors in older persons with type 2 diabetes: a cross-sectional study[J/OL]. Ther Adv Endocrinol Metab, 2019, 10: 2042018819833304 [2023-12-09]. https://pubmed.ncbi.nlm.nih.gov/30858966/. DOI: 10.1177/2042018819833304.
[19]
BREDELLA M A. Sex differences in body composition[J]. Adv Exp Med Biol, 2017, 1043: 9-27. DOI: 10.1007/978-3-319-70178-3_2.
[20]
DELANEY K Z, SANTOSA S. Sex differences in regional adipose tissue depots pose different threats for the development of Type 2 diabetes in males and females[J/OL]. Obes Rev, 2022, 23(3): e13393 [2023-05-01]. https://pubmed.ncbi.nlm.nih.gov/34985183/. DOI: 10.1111/obr.13393.
[21]
SHI X L, LIU W J, ZHANG L L, et al. Sex-specific associations between low muscle mass and glucose fluctuations in patients with type 2 diabetes mellitus[J/OL]. Front Endocrinol, 2022, 13: 913207 [2023-12-09]. https://pubmed.ncbi.nlm.nih.gov/35909561/. DOI: 10.3389/fendo.2022.913207.
[22]
INHUBER S, SOLLMANN N, SCHLAEGER S, et al. Associations of thigh muscle fat infiltration with isometric strength measurements based on chemical shift encoding-based water-fat magnetic resonance imaging[J/OL]. Eur Radiol Exp, 2019, 3(1): 45 [2023-05-01]. https://pubmed.ncbi.nlm.nih.gov/31748839/. DOI: 10.1186/s41747-019-0123-4.
[23]
MORI H, KURODA A, YOSHIDA S, et al. High prevalence and clinical impact of dynapenia and sarcopenia in Japanese patients with type 1 and type 2 diabetes: findings from the Impact of Diabetes Mellitus on Dynapenia study[J]. J Diabetes Investig, 2021, 12(6): 1050-1059. DOI: 10.1111/jdi.13436.
[24]
VITALE J A, MESSINA C, ALBANO D, et al. Appendicular muscle mass, thigh intermuscular fat infiltration, and risk of fall in postmenopausal osteoporotic elder women[J]. Gerontology, 2021, 67(4): 415-424. DOI: 10.1159/000513597.
[25]
LI C W, YU K, SHYH-CHANG N, et al. Pathogenesis of sarcopenia and the relationship with fat mass: descriptive review[J]. J Cachexia Sarcopenia Muscle, 2022, 13(2): 781-794. DOI: 10.1002/jcsm.12901.
[26]
WANG N J, SUN Y, ZHANG H J, et al. Total and regional fat-to-muscle mass ratio measured by bioelectrical impedance and risk of incident type 2 diabetes[J]. J Cachexia Sarcopenia Muscle, 2021, 12(6): 2154-2162. DOI: 10.1002/jcsm.12822.
[27]
NEELAND I J, TURER A T, AYERS C R, et al. Dysfunctional adiposity and the risk of prediabetes and type 2 diabetes in obese adults[J]. JAMA, 2012, 308(11): 1150-1159. DOI: 10.1001/2012.jama.11132.
[28]
OGAMA N, SAKURAI T, KAWASHIMA S, et al. Association of glucose fluctuations with sarcopenia in older adults with type 2 diabetes mellitus[J/OL]. J Clin Med, 2019, 8(3): 319 [2023-12-09]. https://pubmed.ncbi.nlm.nih.gov/30845785/. DOI: 10.3390/jcm8030319.
[29]
IZZO A, MASSIMINO E, RICCARDI G, et al. A narrative review on sarcopenia in type 2 diabetes mellitus: prevalence and associated factors[J/OL]. Nutrients, 2021, 13(1): 183 [2023-05-01]. https://pubmed.ncbi.nlm.nih.gov/33435310/. DOI: 10.3390/nu13010183.
[30]
HU W C, MA Y Q, XING D M. Association of triglyceride-glucose index and the presence of low muscle mass in type 2 diabetes patients[J]. Clin Exp Med, 2023, 23(3): 943-949. DOI: 10.1007/s10238-022-00834-z.
[31]
ZHU Q Q, ZHANG T, CHEANG I, et al. Negative association between triglyceride glucose index and BMI-adjusted skeletal muscle mass index in hypertensive adults[J/OL]. BMC Musculoskelet Disord, 2023, 24(1): 571 [2023-05-01]. https://pubmed.ncbi.nlm.nih.gov/37442968/. DOI: 10.1186/s12891-023-06700-7.
[32]
KALINKOVICH A, LIVSHITS G. Sarcopenic obesity or obese sarcopenia: a cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis[J]. Ageing Res Rev, 2017, 35: 200-221. DOI: 10.1016/j.arr.2016.09.008.
[33]
CAO C, KOH H C E, VAN VLIET S, et al. Increased plasma fatty acid clearance, not fatty acid concentration, is associated with muscle insulin resistance in people with obesity[J/OL]. Metabolism, 2022, 132: 155216 [2023-12-09]. https://pubmed.ncbi.nlm.nih.gov/35577100/. DOI: 10.1016/j.metabol.2022.155216.

上一篇 基于磁共振T2WI影像组学模型对胎盘植入性疾病进行产前诊断及分型
下一篇 钆对比剂剂量对增强T2 FLAIR序列与增强T1WI序列脑转移瘤强化效果的影响及对比研究
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2