分享:
分享到微信朋友圈
X
技术研究
钆对比剂剂量对增强T2 FLAIR序列与增强T1WI序列脑转移瘤强化效果的影响及对比研究
曹明慧 苏赟 苏卫锋 毛家骥 李韵华 沈君

Cite this article as: CAO M H, SU Y, SU W F, et al. Comparative study of different doses of gadolinium contrast agent on contrast enhanced T2 FLAIR and T1WI in diagnosis of brain metastases[J]. Chin J Magn Reson Imaging, 2024, 15(1): 152-157.本文引用格式:曹明慧, 苏赟, 苏卫锋, 等. 钆对比剂剂量对增强T2 FLAIR序列与增强T1WI序列脑转移瘤强化效果的影响及对比研究[J]. 磁共振成像, 2024, 15(1): 152-157. DOI:10.12015/issn.1674-8034.2024.01.024.


[摘要] 目的 对比不同剂量钆对比剂注射后增强液体衰减反转恢复(contrast enhanced T2 fluid attenuated inversion recovery, CE-T2 FLAIR)序列与对比增强T1WI(contrast enhanced T1WI, CE-T1WI)上脑转移瘤的强化效果,探讨半剂量对比剂条件下CE-T2 FLAIR序列在脑转移瘤MRI检查的诊断价值。材料与方法 前瞻性纳入颅外原发恶性肿瘤经病理学明确诊断、脑转移瘤经病理或临床随访证实的患者30例,于3.0 T MRI设备行头颅MRI增强扫描,在常规平扫序列的基础上,行半剂量(0.05 mmol/kg)CE-T2 FLAIR和CE-T1WI扫描,随后分次补充钆对比剂达常规剂量(0.1 mmol/kg)后至双倍剂量(0.2 mmol/kg),在注射对比剂后均进行CE-T2 FLAIR和CE-T1WI扫描。由两位观察者对三次扫描的CE-T2 FLAIR和CE-T1WI图像进行客观测量。计算不同剂量条件下CE-T2 FLAIR和CE-T1WI图像的对比信噪比(contrast to noise ratio, CNR)、相对对比度(relative contrast, RC)及百分比增加(percentage increase, PI)。采用方差分析对客观测量结果进行组间比较,差异有统计学意义(P<0.05)时进行后续多重比较;采用t检验比较两组之间的差异。结果 两位观察者客观评分一致性良好。三组对比剂剂量下CE-T2 FLAIR图像间CNR值与RC值差异无统计学意义(P>0.05);与平扫T2 FLAIR相比,病灶PI增高,增强效果良好。三组对比剂剂量下CE-T1WI图像间CNR值与RC值差异有统计学意义(P<0.05),两两比较结果表明双倍剂量CE-T1WI图像上CNR值及RC值均明显大于半剂量组(P<0.05)。半剂量及常规剂量CE-T2 FLAIR图像CNR值及RC值上均较该组CE-T1WI明显增大,差异有统计学意义(P<0.05)。半剂量CE-T2 FLAIR图像CNR值及RC值均明显大于常规剂量CE-T1WI(P<0.05)。与双倍剂量CE-T1WI相比,半剂量CE-T2 FLAIR图像CNR值增大(P<0.05),RC值差异无统计学意义(P>0.05)。结论 半剂量对比剂下CE-T2 FLAIR图像上脑转移瘤的强化效果与常规CE-T1WI相仿,病灶显示良好,为半剂量对比剂的CE-T2 FLAIR序列应用于脑转移瘤MRI检查提供依据。
[Abstract] Objective To determine the efficacy of contrast enhanced T2 fluid attenuated inversion recovery (CE-T2 FLAIR) sequence and contrast enhanced T1 weighted imaging (CE-T1WI) of brain metastases after injection of different doses of gadolinium contrast agent, and to investigate the clinical value of half-dose contrast agent enhanced T2 FLAIR sequence in the diagnosis of brain metastases.Materials and Methods A total of 30 patients with a history of extracranial primary malignant tumors confirmed by pathological diagnosis and brain metastases confirmed by pathological or clinical follow-up were prospectively enrolled. On the basis of conventional non-enhanced T1WI and T2 FLAIR sequences using a 3.0 T MRI equipment, CE-T2 FLAIR and CE-T1WI scans were performed after administration of half-dose (0.05 mmol/kg) gadolinium-based contrast agent (GBCA), followed by fractional supplementation of GBCA to the conventional-dose (0.1 mmol/kg) and double-dose (0.2 mmol/kg). After injection of the GBCA, both CE-T2 FLAIR and CE-T1WI scans were performed. Objective measurements of images were performed by two observers. The contrast-to-noise ratio (CNR), relative-contrast (RC), and percentage increase (PI) of CE-T2 FLAIR and CE-T1WI images under different doses were calculated. Analysis of variance were used to analyze objective measurements between different groups and multiple comparisons were performed when the difference was statistically significant (P<0.05). The t-test was used to analyze the differences between two groups.Results The objective scores were consistent between two observers. There was no significant difference in CNR and RC values among CE-T2 FLAIR images under three different doses of GBCA (P>0.05). Compared with non-enhanced T2 FLAIR scanning, the PI of the lesion was increased. There were significant differences in the CNR and RC values between the CE-T1WI images at three different doses of GBCA (P<0.05). The results of pairwise comparison showed that the CNR and RC values on the doubling-dose CE-T1WI images were significantly higher than those on the half-dose group (P<0.05). The CNR and RC values of CE-T2 FLAIR images at half-dose and conventional-dose were significantly increased compared to CE-T1WI in this group, and the difference was statistically significant (P<0.05). The CNR and RC values of the half-dose CE-T2 FLAIR images were higher than those of the conventional-dose CE-T1WI (P<0.05). Compared with doubling-dose CE-T1WI, the CNR value of the half-dose CE-T2 FLAIR image increased (P<0.05), while the difference in RC value was not statistically significant (P>0.05).Conclusions In comparison with CE-T1WI, the CE-T2 FLAIR sequence with half-dose GBCA could achieve similar image quality and show values in clinical diagnosis of brain metastases.
[关键词] 脑转移瘤;磁共振成像;液体衰减反转恢复序列;半剂量钆对比剂;对比增强
[Keywords] brain metastases;magnetic resonance imaging;fluid-attenuated inversion recovery sequence;half-dose gadolinium contrast agent;contrast-enhanced

曹明慧    苏赟    苏卫锋    毛家骥    李韵华    沈君 *  

中山大学孙逸仙纪念医院放射科,广东省恶性肿瘤表观遗传与基因调控重点实验室,广州 510120

通信作者:沈君,E-mail:shenjun@mail.sysu.edu.cn

作者贡献声明::沈君设计本研究的方案,并对稿件重要的智力内容进行了修改,获得了国家自然科学基金项目资助;曹明慧起草和撰写稿件,获取、分析和解释本研究的数据;苏赟和苏卫锋负责获取本研究的数据,对稿件重要的智力内容进行了修改;毛家骥、李韵华负责分析和解释本研究的数据,对稿件重要的智力内容进行了修改;全体作者都同意发表最后的修改稿,同意对本研究的所有方面负责,确保本研究的准确性和诚信。


基金项目: 国家自然科学基金项目 12126610
收稿日期:2023-11-28
接受日期:2024-01-04
中图分类号:R445.2  R739.41 
文献标识码:A
DOI: 10.12015/issn.1674-8034.2024.01.024
本文引用格式:曹明慧, 苏赟, 苏卫锋, 等. 钆对比剂剂量对增强T2 FLAIR序列与增强T1WI序列脑转移瘤强化效果的影响及对比研究[J]. 磁共振成像, 2024, 15(1): 152-157. DOI:10.12015/issn.1674-8034.2024.01.024.

0 引言

       脑转移瘤是成人最常见的颅内肿瘤之一[1, 2],原发肿瘤类型多为肺癌、乳腺癌、肾癌和黑色素瘤等[3, 4]。脑转移瘤的患者常产生中枢神经系统症状,生活质量受到严重影响[5]。若未能进行及时有效治疗,患者生存时间短、预后差。因此,早期发现并明确脑转移瘤是否存在、确定病灶数目、定位及边界对于脑转移瘤的治疗方案的制订及预后评估具有重要意义[6]。MRI影像学检查是脑转移瘤诊断中极为重要的手段[7, 8]。但由于脑转移瘤在影像上表现为小结节伴有周围大片水肿,常规MRI平扫序列难以有效鉴别肿瘤实质与其水肿区域[9]。目前,增强MRI(contrast enhanced MRI, CE-MRI)是评估脑肿瘤的首选检查方案[10],但常规对比增强T1WI(contrast enhanced T1WI, CE-T1WI)存在强化的血管干扰病变显示等局限性,对于脑内小病灶的显示效果欠佳,尤其是位于脑皮层等部位的转移瘤易发生漏诊[11]。使用更大剂量的含钆对比剂(gadolinium-based contrast agent, GBCA)虽可提高脑转移瘤的检出率[12],但可能会增加如肾脏纤维化及脑、骨等多器官的钆沉积等副作用的风险[13, 14]

       T2液体衰减反转恢复(T2 fluid attenuated inversion recovery, T2 FLAIR)序列因具有较长的反转时间而具备轻微T1效应,而GBCA对T1弛豫时间的缩短使其在T2 FLAIR上也表现为高信号[15]。因此,注射GBCA后病灶在T2 FLAIR上也可出现强化。同时,T2 FLAIR序列对于低剂量的GBCA更为敏感[16]。近年来,胶质瘤、脑膜瘤等多种脑肿瘤在增强T2 FLAIR(CE-T2 FLAIR)图像的强化效果得到广泛研究,对病灶具有较高敏感性[17, 18]。既往研究多为对比脑内病变在常规GBCA剂量下的CE-T2 FLAIR与CE-T1WI的强化效果[19]。本研究旨在对比注射不同剂量GBCA(半剂量、正常剂量及双倍剂量)后,CE-T2 FLAIR与CE-T1WI图像中脑转移瘤的强化效果,探讨半剂量增强T2 FLAIR序列在脑转移瘤MRI检查中的诊断价值。

1 材料与方法

1.1 一般资料

       前瞻性纳入中山大学孙逸仙纪念医院2022年11月至2023年3月具有原发恶性肿瘤病史、临床怀疑脑转移需行MRI检查的患者62例。纳入标准:(1)常规MR图像上脑实质内占位;(2)颅外原发恶性肿瘤经手术或穿刺活检得到病理学证实;(3)脑转移病灶的诊断经手术病理或临床随访3~6个月证实(证实标准[20]为在后续MRI检查中,现有病灶的大小发生变化、经放化疗后病灶增大或缩小、有新发强化病灶)。排除标准:(1)MRI检查前2个月内接受放疗、化疗或颅脑手术史的患者;(2)头颅MR增强图像质量不佳;(3)有MR检查绝对禁忌证。最终纳入患者30例,年龄30~76(52.43±9.14)岁。本研究遵守《赫尔辛基宣言》,并获得中山大学孙逸仙纪念医院医学伦理委员会批准(伦理批号:SYSKY-2022-269-01),全体受试者均已签署知情同意书。病例纳排标准如图1所示。

图1  病例纳排标准及MRI扫描流程图。
Fig. 1  A flowchart showing the patient inclusion and exclusion process and MRI scanning.

1.2 扫描方案

       本研究受试者均采用西门子MAGNETOM Vida 3.0 T超导磁共振扫描仪(SIEMENS Medical Systems,德国),使用8通道头颅相控阵线圈扫描。在完成常规T1WI、T2 FLAIR平扫序列后,注射GBCA为钆布醇注射液(加乐显,拜耳医药保健有限公司,德国),采用高压注射器经肘静脉以2 mL/s的速率注射,进行头颅增强扫描。扫描流程如图1所示,在GBCA的首次注射剂量(0.05 mmol/kg)完成后,采集第一次CE-T2 FLAIR及CE-T1WI序列(第一次增强扫描)。扫描完毕后立即注射GBCA至常规剂量(0.1 mmol/kg),采集第二次CE-T2 FLAIR及CE-T1WI序列(第二次增强扫描)。扫描完毕后再次补充GBCA至双倍剂量(0.2 mmol/kg),随后采集第三次CE-T2 FLAIR序列及CE-T1WI序列(第三次增强扫描)。T2 FLAIR扫描参数:TR 8 000 ms,TE 92 ms,TI 2 400 ms,FA 120°,层厚3 mm,层间距1 mm,带宽191 Hz/px,矩阵189 mm×320 mm;T1WI扫描参数:TR 2 000 ms,TE 11 ms,FA 150°,层厚5 mm,层间距1 mm,带宽199 Hz/px,矩阵230 mm×256 mm。

1.3 图像分析

       扫描完成后将所有图像传入西门子Syngo MR D13后处理工作站进行图像分析。由两名放射科医师(分别从事神经MRI诊断工作3年的住院医师和6年的主治医师)以双盲法对所有图像进行分析和测量。对比常规平扫序列,病灶在CE-T1WI或CE-T2 FLAIR中任一序列上显示强化即诊断为脑转移瘤,并将增强扫描强化的病灶区域定义为肿瘤实质。对于多发脑转移瘤,则选取肿瘤实质区域最大、强化最明显的病灶。在CE-T1WI及CE-T2 FLAIR图像上,尽可能避开囊变、坏死、出血区域及正常血管,选择肿瘤实质最大层面,在明显强化的区域内勾画感兴趣区(region of interest, ROI)测量实质成分及同层面正常脑白质的信号强度(signal intensity, SI)、噪声值,三次测量取其平均值[20]图2)。在三次增强扫描的图像上,保证ROI大小相等并尽可能位于病灶的同一层面。根据每期所得GBCA剂量不同,将测量数据分为A组(第一次增强扫描;0.05 mmol/kg)、B组(第二次增强扫描;0.1 mmol/kg)及C组(第三次增强扫描;0.2 mmol/kg)。计算每组图像的对比噪声比(contras-to-noise, CNR)及相对对比度(relative contrast, RC)。参数计算公式见式(1)~(2):

       其中,SD指噪声,即ROI内SI的标准差。

       此外,为避免T2-FLAIR序列上固有的高信号,采用百分比增加(percentage increase, PI)来表示CE-T2 FLAIR的真实强化程度[21, 22]。参数计算公式见式(3)

图2  女,33岁,肺浸润性腺癌(高-中分化)。2A~2B分别为T2 FLAIR及T1WI平扫序列;2C~2D分别为半剂量(0.05 mmol/kg)GBCA下CE-T2 FLAIR及CE-T1WI图像;2E~2F分别为常规剂量(0.1 mmol/kg)GBCA下CE-T2 FLAIR及CE-T1WI图像;2G~2H分别为双倍剂量(0.2 mmol/kg)GBCA下CE-T2 FLAIR及CE-T1WI图像;2G为ROI放置示例,ROI分别位于病灶强化部分(ROI 1)、对侧脑白质(ROI 2)和空气(ROI 3)。FLAIR:液体衰减反转恢复;CE:对比增强;ROI:感兴趣区。
Fig. 2  A 33-year-old female patient diagnosed with infiltrating adenocarcinoma (high to moderate differentiation). 2A-2B: Images of T2 fluid attenuated inversion recovery (T2 FLAIR) sequence and T1 weighted imaging (T1WI); 2C-2D: The contrast enhanced T2 FLAIR (CE-T2 FLAIR) image and contrast enhanced T1WI (CE-T1WI) at half-dose (0.05 mmol/kg) GBCA; 2E-2F: The CE-T2 FLAIR image and CE-T1WI at conventional-dose (0.1 mmol/kg) GBCA; 2G-2H: The CE-T2 FLAIR image and CE-T1WI at double-dose (0.2 mmol/kg) GBCA;2G illustrated that region of interest (ROI) placed in the enhanced area of the mass (ROI 1), contralateral white matter (ROI 2) and air (ROI 3), respectively.

1.4 统计学分析

       使用SPSS 26.0软件进行统计学分析。连续性变量数据采用组内相关系数(intra-class correlation coefficients, ICC)评估观察者间一致性,0.75<ICC≤1表示一致性良好。计量资料采用均数±标准差表示。三组扫描图像测得CNR、RC值的比较采用方差分析,三组CE-T2 FLAIR测得PI的比较采用多样本秩和(Kruskal-Wallis)检验,两两比较采用Bonferroni校正。采用t检验比较两组之间的差异。P<0.05时认为差异具有统计学意义。

2 结果

2.1 图像客观测量数据的一致性检验

       两名观察者对不同剂量组的CE-T2 FLAIR及CE-T1WI图像上测得的肿瘤实质成分及正常脑白质的SI平均值和噪声平均值数据一致性良好(ICC:0.873~0.968)。取高年资者(观察者2)测量数据进行后续分析。

2.2 不同剂量组间CE-T2 FLAIR图像CNR、RC和PI的比较

       在连续三次增强扫描的CE-T2 FLAIR图像上测得CNR值分别是CNRA=196.61±69.55、CNRB=175.94±62.03、CNRC=159.46±78.07,三组间差异无统计学意义(P>0.05)。在连续三次增强扫描的CE-T2 FLAIR图像上测得RC值分别是RCA=1.53±0.62、RCB=1.29±0.32、RCC=1.25±0.66,差异无统计学意义(P>0.05)。与平扫T2 FLAIR测得的SI相比,B组CE-T2 FLAIR序列的百分比增加率最高(PI=29.56%),但与A组及C组间差异无统计学意义(P>0.05)(表1)。

表1  不同剂量组间CE-T2 FLAIR图像CNR、RC及PI的比较
Tab. 1  Comparison of differences of CNR, RC and PI among three groups on CE-T2 FLAIR images

2.3 不同剂量组间CE-T1W图像CNR、RC的比较

       三种剂量条件下CE-T1WI图像测得的CNR值分别为CNRA=44.43±28.07、CNRB=65.94±30.78、CNRC=120.92±68.31,RC值分别为RCA=0.39±0.26、RCB=0.53±0.26、RCC=0.99±0.54,三组间差异均有统计学意义(均为P<0.05)(表2)。进行两两比较发现,A组与C组在CE-T1WI上测得的CNR值、CR值差异均有统计学意义(P=0.004;P<0.001),而A组与B组、B组与C组测得CNR值和RC值差异无统计学意义(均为P>0.05)。表明与双倍剂量(0.2 mmol/kg)下的CE-T1WI相比,GBCA剂量较低(0.05 mmol/kg)时,CE-T1WI上测得的CNR和RC值均明显减低,提示在CE-T1WI序列中,GBCA的使用剂量可影响病灶的发现和诊断。

表2  不同剂量组间CE-T1WI图像CNR、RC的比较
Tab. 2  Comparison of differences of CNR and RC among three groups on CE-T1W images

2.4 同一剂量组内及不同剂量组间CE-T2 FLAIR与CE-T1WI上CNR值、RC值的比较

       对比同一剂量组内测得CE-T2 FLAIR序列和CE-T1WI序列的CNR值与RC值,A组和B组在CE-T2 FLAIR序列上测得的CNR值及RC值上均较CE-T1WI序列明显增高,差异有统计学意义(均为P<0.001)。C组组内对比中,两个序列测得的CNR值、RC值相仿,差异无统计学意义(P=0.26;P=0.19)。分别对比三组不同剂量间CE-T2 FLAIR序列与CE-T1WI序列上测得的CNR值和RC值,A组、B组及C组中CE-T2 FLAIR序列测得CNR值和RC值均明显高于A组与B组CE-T1WI序列的CNR值和RC值,差异有统计学意义(P<0.05)。A组及B组CE-T2 FLAIR序列测得CNR值较C组CE-T1WI序列明显增高,差异有统计学意义(P=0.023;P=0.018),RC值差异无统计学意义(P=0.059;P=0.063)(表34)。

表3  同一剂量组内及不同剂量组间CE-T2 FLAIR与CE-T1WI CNR值的两两比较
Tab. 3  The pairwise comparison of differences of CNR values on CE-T2 FLAIR and CE-T1WI within the same dose group and between different dose groups
表4  同一剂量组内及不同剂量组间CE-T2 FLAIR与CE-T1WI RC值的两两比较
Tab. 4  The pairwise comparison of differences of RC values on CE-T2 FLAIR and CE-T1WI within the same dose group and between different dose groups

3 讨论

       本研究通过分次注射半剂量(0.05 mmol/kg)、临床常规剂量(0.1 mmol/kg)及双倍剂量(0.2 mmol/kg)的GBCA后,对比CE-T2 FLAIR与CE-T1WI序列上脑转移瘤的强化效果,显示在CE-T2 FLAIR序列上,三种GBCA剂量条件下脑转移瘤的强化效果相仿;CE-T1WI上,注射半剂量对比剂的脑转移瘤的强化效果明显低于双倍剂量组;半剂量下CE-T2 FLAIR图像上测得的CNR值高于双倍剂量下CE-T1WI图像的CNR值。提示与常规CE-T1WI相比,注射半剂量GBCA的CE-T2 FLAIR图像上能够清晰显示转移瘤,病灶强化效果良好,能够满足临床诊断需要,且可避免高剂量GBCA的副作用,有助于提高MRI检查安全性。

3.1 GBCA剂量对CE-T2 FLAIR及CE-T1WI序列检出病灶能力的影响

       MRI增强扫描是临床发现和诊断脑转移瘤最常用的手段,脑转移瘤的准确定位、定性、定量及鉴别诊断对临床诊疗计划的制订具有重要价值[23, 24]。MRI增强扫描中最常用的对比剂GBCA是静脉型细胞外间隙对比剂,常规剂量下可缩短T1、T2的弛豫时间,以T1时间缩短更为显著。GBCA在临床应用的常规剂量为0.1 mmol/kg[25]。在本研究中,注射双倍剂量(0.2 mmol/kg)对比剂后,CE-T1WI上脑转移瘤的强化效果明显优于半剂量(0.05 mmol/kg)组。有研究发现应用GBCA达0.3 mmol/kg时,CE-T1WI上脑转移瘤的强化程度明显增高,尤其是对于小于5 mm的病灶,诊断敏感性更高[19, 26]。然而,大剂量或多次使用GBCA进行增强扫描可能增加肾脏纤维化、脑组织钆沉积的风险[13, 14],如何在保证病灶的强化效果的同时减少GBCA的使用剂量已成为MRI的研究热点和方向之一[27, 28]

       本研究中,在注射半剂量、常规剂量及双倍剂量GBCA后,CE-T2 FLAIR图像上脑转移瘤的强化效果无明显差异,提示半剂量GBCA下的CE-T2 FLAIR序列可实现与常规剂量相仿的成像和诊断效果。此外,CE-T2 FLAIR上的高信号可能是T2弛豫时间的延长或T1弛豫时间缩短所致[22],为明确注射对比GBCA后观察到的高信号能否反映病灶的真实强化,我们将连续三次增强扫描图像与T2 FLAIR平扫图像上病灶的信号强度进行对比,表明病灶增强效果良好,但三组病灶的PI差异无统计学意义,提示不同GBCA剂量下CE-T2 FLAIR序列上病灶的强化的程度无明显差异。可能原因是当GBCA剂量较高时,可在病变区域局部高浓度聚集,使CE-T2 FLAIR上病灶的强化程度到达峰值,T1效应达到饱和状态,T2弛豫缩短效应更为明显,T2信号出现衰减导致强化减弱或改变[29]

3.2 CE-T2 FLAIR应用于脑转移瘤诊断的优势

       T2 FLAIR脉冲序列是自由水信号为零的重T2WI,由于较长的反转时间产生部分T1WI效应,使GBCA对T1弛豫时间的缩短,在T2 FLAIR上也表现为高信号,因此注射GBCA后,T2 FLAIR图像上病灶也可出现强化。既往研究中多采用常规剂量的GBCA评价CE-T2 FLAIR的成像效果,表明CE-T2 FLAIR可作为常规CE-T1WI的补充序列[30, 31, 32]。在本研究中,半剂量GBCA注射后,CE-T2 FLAIR测得的脑转移瘤的强化效果与双倍剂量下CE-T1WI上测得的RC值无明显差异,CNR值较优,表明半剂量GBCA下的CE-T2 FLAIR序列的图像质量与双倍剂量的CE-T1WI序列无明显差异,可实现病灶的清晰显示,提示应用半剂量对比剂的CE-T2 FLAIR序列对脑转移瘤具有较好的诊断价值。有研究发现CE-T2 FLAIR对低剂量GBCA的敏感度约为常规CE-T1WI的10倍[33], 认为T2 FLAIR序列可能对GBCA更为敏感,推测原因可能是在较低的GBCA浓度下,CE-T2 FLAIR对T1弛豫时间的缩短效应较CE-T1WI更为敏感[34]以及T2 FLAIR序列上高信号的脑脊液信号被抑制[35],肿瘤大小及其边界显示更为清楚[15]

3.3 局限性

       本研究存在不足之处。首先,本研究采用传统手动勾画ROI,虽然勾画面积和标准在同一患者的病灶、脑白质区域是一致的,但可能会遗漏强化不均匀区域的信息,且稳定性可能较差,需要在今后研究中适当考虑。其次,本研究仅针对脑转移瘤,但由于部分脑转移瘤患者不进行病理活检,难以对半剂量对比剂注射条件下CE-T2 FLAIR上的影像表现进行病理验证。最后,本研究仅采用3.0 T西门子机型,不同机器型号、不同磁场强度在脑转移瘤数据采集及统计方面可能会对准确性产生一定程度的影响,且本研究为单中心研究,样本量较小可能会产生偏倚,后续应纳入更多中心、更多病例进行研究。

4 结论

       综上所述,本研究中半剂量对比剂注射条件下的CE-T2 FLAIR序列上脑转移瘤的强化效果与常规CE-T1WI相仿,可实现病灶的清晰显示,适合低剂量GBCA随访监测以减少钆沉积风险,为半剂量CE-T2 FLAIR进一步应用于临床提供了依据。

[1]
WANG Z, WANG Y, CHANG M, et al. Single-cell transcriptomic analyses provide insights into the cellular origins and drivers of brain metastasis from lung adenocarcinoma[J]. Neuro Oncol, 2023, 25(7): 1262-1274. DOI: 10.1093/neuonc/noad017.
[2]
孙丹丹, 陈昆涛, 梁迪. T2-FLAIR增强在脑及脑膜病变中的应用[J]. 医学综述, 2020, 26(10): 2009-2013. DOI: 10.3969/j.issn.1006-2084.2020.10.026.
SUN D D, CHEN K T, LIANG D. T2-FLAIR enhancement in cerebral and meningeal lesions[J]. Med Recap, 2020, 26(10): 2009-2013. DOI: 10.3969/j.issn.1006-2084.2020.10.026.
[3]
CAGNEY D N, MARTIN A M, CATALANO P J, et al. Incidence and prognosis of patients with brain metastases at diagnosis of systemic malignancy: a population-based study[J]. Neuro Oncol, 2017, 19(11): 1511-1521. DOI: 10.1093/neuonc/nox077.
[4]
BOIRE A, BRASTIANOS P K, GARZIA L, et al. Brain metastasis[J]. Nat Rev Cancer, 2020, 20(1): 4-11. DOI: 10.1038/s41568-019-0220-y.
[5]
孙丹, 张国荣. 难治性脑转移瘤的立体定向放射外科治疗策略及进展[J]. 中华放射医学与防护杂志, 2020, 40(5): 408-412. DOI: 10.3760/cma.j.issn.0254-5098.2020.05.014.
SUN D, ZHANG G R. Strategies and progresses of stereotactic radiosurgery for intractable brain metastases[J]. Chin. J Radiol Med Prot, 2020, 40(5): 408-412. DOI: 10.3760/cma.j.issn.0254-5098.2020.05.014.
[6]
ØEN S K, JOHANNESSEN K, PEDERSEN L K, et al. Diagnostic value of 18F-FACBC PET/MRI in brain metastases[J]. Clin Nucl Med, 2022, 47(12): 1030-1039. DOI: 10.1097/RLU.0000000000004435.
[7]
李瑞, 冯峰. 脑转移瘤的MRI研究进展[J]. CT理论与应用研究, 2019, 28(5): 631-639. DOI: 10.15953/j.1004-4140.2019.28.05.14.
LI R, FENG F. Research progress of MRI in brain metastasis[J]. CT Theory and Applications, 2019, 28(5): 631-639. DOI: 10.15953/j.1004-4140.2019.28.05.14.
[8]
TEUNISSEN W H T, GOVAERTS C W, KRAMER M C A, et al. Diagnostic accuracy of MRI techniques for treatment response evaluation in patients with brain metastasis: A systematic review and meta-analysis[J]. Radiother Oncol, 2022, 177: 121-133. DOI: 10.1016/j.radonc.2022.10.026.
[9]
KAUFMANN T J, SMITS M, BOXERMAN J, et al. Consensus recommendations for a standardized brain tumor imaging protocol for clinical trials in brain metastases[J]. Neuro Oncol, 2020, 22(6): 757-772. DOI: 10.1093/neuonc/noaa030.
[10]
GALLDIKS N, LANGEN K J, ALBERT N L, et al. PET imaging in patients with brain metastasis-report of the RANO/PET group[J]. Neuro Oncol, 2019, 21(5): 585-595. DOI: 10.1093/neuonc/noz003.
[11]
IBRAHIM R M, RAHMAN S A A, ELNEKEIDY A E A M. Added value of delayed post-contrast FLAIR in diagnosis of metastatic brain lesions[J/OL]. Egypt J Radio Nucl Med, 2022, 53(1): 205 [2023-08-10]. https://ejrnm.springeropen.com/articles/10.1186/s43055-022-00844-7. DOI: 10.1186/s43055-022-00844-7.
[12]
EDELMAN R, LELOUDAS N, PANG J, et al. Twofold improved tumor-to-brain contrast using a novel T1 relaxation-enhanced steady-state (T(1)RESS) MRI technique[J/OL]. Sci Adv, 2020, 6(44): eabd1635 [2023-08-10]. https://pubmed.ncbi.nlm.nih.gov/33115747/. DOI: 10.1126/sciadv.abd1635.
[13]
KANDA T, ISHII K, KAWAGUCHI H, et al. High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material[J]. Radiology, 2014, 270(3): 834-841. DOI: 10.1148/radiol.13131669.
[14]
TEDESCHI E, CARANCI F, GIORDANO F, et al. Gadolinium retention in the body: what we know and what we can do[J]. Radiol Med, 2017, 122(8): 589-600. DOI: 10.1007/s11547-017-0757-3.
[15]
JIN T, ZHANG H, LIU X, et al. Enhancement degree of brain metastases: correlation analysis between enhanced T2 FLAIR and vascular permeability parameters of dynamic contrast-enhanced MRI[J]. Eur Radiol, 2021, 31(8): 5595-5604. DOI: 10.1007/s00330-020-07625-8.
[16]
BENSON J C, CARLSON M L, LANE J I. Peritumoral signal on postcontrast FLAIR images: description and proposed biomechanism in vestibular schwannomas[J]. AJNR Am J Neuroradiol, 2023, 44(10): 1171-1175. DOI: 10.3174/ajnr.A7979.
[17]
YAMASHITA S, TAKESHIMA H, KADOTA Y, et al. T2-fluid-attenuated inversion recovery mismatch sign in lower grade gliomas: correlation with pathological and molecular findings[J]. Brain Tumor Pathol, 2022, 39(2): 88-98. DOI: 10.1007/s10014-022-00433-6.
[18]
PANYAPING T, PUNPICHET M, TUNLAYADECHANONT P, et al. Usefulness of a rim-enhancing pattern on the contrast-enhanced 3D-FLAIR sequence and MRI characteristics for distinguishing meningioma and malignant dural-based tumor[J]. AJNR Am J Neuroradiol, 2023, 44(3): 247-253. DOI: 10.3174/ajnr.A7780.
[19]
MATHEWS V P, CALDEMEYER K S, LOWE M J, et al. Brain: gadolinium-enhanced fast fluid-attenuated inversion-recovery MR imaging[J]. Radiology, 1999, 211(1): 257-263. DOI: 10.1148/radiology.211.1.r99mr25257.
[20]
KIM D, HEO Y J, JEONG H W, et al. Usefulness of the delay alternating with nutation for tailored excitation pulse with T1-weighted sampling perfection with application-optimized contrasts using different flip angle evolution in the detection of cerebral metastases: comparison with MPRAGE imaging[J]. AJNR Am J Neuroradiol, 2019, 40(9): 1469-1475. DOI: 10.3174/ajnr.A6158.
[21]
RUI W, JIN T, ZHANG H, et al. Optimization of contrast agent dosage on contrast-enhanced T2 fluid-attenuated inversion recovery: an in vitro and in vivo study[J]. J Comput Assist Tomogr, 2021, 45(1): 121-127. DOI: 10.1097/RCT.0000000000001055.
[22]
JIN T, GE M, HUANG R, et al. Utility of contrast-enhanced T2 FLAIR for imaging brain metastases using a half-dose high-relaxivity contrast agent[J]. AJNR Am J Neuroradiol, 2021, 42(3): 457-463. DOI: 10.3174/ajnr.A6931.
[23]
ZHOU Z, SANDERS J W, JOHNSON J M, et al. Computer-aided detection of brain metastases in T1-weighted MRI for stereotactic radiosurgery using deep learning single-shot detectors[J]. Radiology, 2020, 295(2): 407-415. DOI: 10.1148/radiol.2020191479.
[24]
EGGEN A C, WINDT T, BOSMA I, et al. Value of screening and follow-up brain MRI scans in patients with metastatic melanoma[J]. Cancer Med, 2021, 10(23): 8395-8404. DOI: 10.1002/cam4.4342.
[25]
徐焱, 陈波, 常惠贤. MRI对比增强FLIAR序列与T1WI增强对脑转移瘤的诊断差异性[J]. 中国临床实用医学, 2010, 4(8): 120-121. DOI: 10.3760/cma.j.issn1673-8799.2010.08.70.
XU Y, CHEN B, CHANG H X. Differential diagnosis of brain metastases between MRI contrast-enhanced FLIAR sequence and T1WI enhancement[J]. China Clin Prac Med, 2010, 4(8): 120-121. DOI: 10.3760/cma.j.issn1673-8799.2010.08.70.
[26]
SZE G, JOHNSON C, KAWAMURA Y, et al. Comparison of single- and triple-dose contrast material in the MR screening of brain metastases[J]. AJNR Am J Neuroradiol, 1998, 19(5): 821-828.
[27]
ROBERT P, VIVES V, GRINDEL A L, et al. Contrast-to-dose relationship of gadopiclenol, an MRI macrocyclic gadolinium-based contrast agent, compared with gadoterate, gadobenate, and gadobutrol in a rat brain tumor model[J]. Radiology, 2020, 294(1): 117-126. DOI: 10.1148/radiol.2019182953.
[28]
LOEVNER L A, KOLUMBAN B, HUTÓCZKI G, et al. Efficacy and safety of gadopiclenol for contrast-enhanced MRI of the central nervous system: the PICTURE randomized clinical trial[J/OL]. Invest Radiol, 2023, 58(5): 307 [2023-08-10]. https://pubmed.ncbi.nlm.nih.gov/36729404/. DOI: 10.1097/RLI.0000000000000944.
[29]
ELSTER A D, SOBOL W T, HINSON W H. Pseudolayering of Gd-DTPA in the urinary bladder[J]. Radiology, 1990, 174(2): 379-381. DOI: 10.1148/radiology.174.2.2296649.
[30]
张乐乐, 王晓明. 增强Cube FLAIR与增强T1WI序列在颅脑疾病中的对比研究[J]. 磁共振成像, 2017, 8(10): 726-731. DOI: 10.12015/ssn.1674-8034.2017.10.002.
ZHANG L L, WANG X M. Comparative study on contrast-enhanced Cube FLAIR and T1WI sequences in craniocerebral diseases[J]. Chin J Magn Reson Imaging, 2017, 8(10): 726-731. DOI: 10.12015/ssn.1674-8034.2017.10.002.
[31]
AHN S J, TAOKA T, MOON W J, et al. Contrast‐enhanced fluid‐attenuated inversion recovery in neuroimaging: a narrative review on clinical applications and technical advances[J]. J Magn Reson Imaging, 2022, 56(2): 341-353. DOI: 10.1002/jmri.28117.
[32]
CHUL L Y, SUH S, RYOO I, et al. Imaging finding and analysis of brain lymphoma in contrast-enhanced fluid attenuated inversion recovery sequence[J/OL]. Eur J Radiol, 2022, 155: 110490 [2023-08-10]. https://pubmed.ncbi.nlm.nih.gov/36030660/. DOI: 10.1016/j.ejrad.2022.110490.
[33]
KÖHRMANN M, STRUFFERT T, FRENZEL T, et al. The hyperintense acute reperfusion marker on fluid-attenuated inversion recovery magnetic resonance imaging is caused by gadolinium in the cerebrospinal fluid[J]. Stroke, 2012, 43(1): 259-261. DOI: 10.1161/STROKEAHA.111.632356.
[34]
OSAWA I, KOZAWA E, YAMAMOTO Y, et al. Contrast enhancement of the normal infundibular recess using heavily T2-weighted 3D FLAIR[J]. Magn Reson Med Sci, 2022, 21(3): 469-476. DOI: 10.2463/mrms.mp.2021-0021.
[35]
NAGANAWA S. The technical and clinical features of 3D-FLAIR in neuroimaging[J]. Magn Reson Med Sci, 2015, 14(2): 93-106. DOI: 10.2463/mrms.2014-0132.

上一篇 磁共振多回波DIXON技术对2型糖尿病患者骨骼肌脂肪含量的定量评估
下一篇 自主研发高分辨盆腔专用线圈在3.0 T磁共振设备成像价值的评估
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2