分享:
分享到微信朋友圈
X
讲座
肝脏肿瘤的MR检查与诊断思路
赵燕风 欧阳汉

赵燕风,欧阳汉.肝脏肿瘤的MR检查与诊断思路.磁共振成像, 2012, 3(6): 456-464. DOI:10.3969/j.issn.1674-8034.2012.06.011.


[摘要] 肝脏肿瘤病变组织学类型多种多样,MR影像学有较为独特的信号改变及强化特点。该文总结MRI检查技术要点,对常见肿瘤病变的信号特征、强化特征进行对比分析,旨在理清肝脏肿瘤病变的诊断思路,进一步提高影像诊断水平。
[Abstract] There are some relatively unique signal intensity and enhanced feature on MR imaging of various histological types of hepatic tumors. This paper which summarized the key points of scanning parameters and compared the signal and enhanced feature of common tumors of liver, aimed to help clarify the analytical method and further improve the diagnostic ability of MR imaging on hepatic tumors.
[关键词] 肝肿瘤;磁共振成像;诊断技术和方法
[Keywords] Liver neoplasms;Magnetic resonance imaging;Diagnostic techniques and procedures

赵燕风 中国医学科学院北京协和医学院肿瘤医院影像诊断科,北京 100021

欧阳汉* 中国医学科学院北京协和医学院肿瘤医院影像诊断科,北京 100021

通讯作者:欧阳汉,E-mail:houybj@126.com


基金项目: "十一五"国家科技及支撑课题 2007BAI05B05
收稿日期:2012-05-16
接受日期:2012-09-02
中图分类号:R445.2; R735.7 
文献标识码:A
DOI: 10.3969/j.issn.1674-8034.2012.06.011
赵燕风,欧阳汉.肝脏肿瘤的MR检查与诊断思路.磁共振成像, 2012, 3(6): 456-464. DOI:10.3969/j.issn.1674-8034.2012.06.011.

       肝脏是人体最大实质脏器,也是最大的腺体,同时具有较为独特的供血系统,是各类原发及继发肿瘤的常见器官。尽管CT和超声检查经常作为肝脏病变的基本检查手段被广泛应用,但由于MRI检查可以提供无法比拟的软组织对比度、无需像CT一样依赖碘对比剂或像超声一样依赖于操作医师的经验与主观判断力,可以对肝脏实质、肝内胆管及血管系统提供更加详细、专业的诊断评估。

1 肝脏肿瘤的MRI检查技术

1.1 场强与线圈

       肝脏的MRI检查最好选择1.0 T以上的中高场强MR机来完成,主要在于其能够提供良好的组织对比分辩率和高信噪比,且扫描速度快,有利于获得高质量的MR图像。对于1.5 T与3.0 T设备哪个更适合肝脏MRI检查仍存有争议,但笔者认为虽然3.0 T MR机在腹部扫描有时容易因磁敏感效应引起图像伪影,但是其所具有的更高图像信噪比,尤其是在屏气的快速GRE T1WI序列上更为显著。因此笔者推荐使用3.0 T MR机进行肝脏MRI检查。

       为提高图像的信噪比以及加快采集速度[1,2],应使用多通道表面相控阵线圈。

1.2 患者配合情况

       受检者采取仰卧位扫描,保持身体不动。呼吸配合包括呼吸节律均匀与可以屏气配合,这样可以减少腹壁脂肪的运动伪影[1]

1.3 扫描方位

       多数情况下横轴面扫描就可以解决肝脏病变的绝大多数问题,但定位像后先进行一个冠状面扫描有助于了解肝脏范围,为横轴面扫描提供定位参考,避免肝顶或肝脏下缘病变遗漏。冠状面、矢状面、斜位扫描还可以帮助确定病变的来源器官以及病变与周围脏器的毗邻关系。

1.4 FOV及编码方向

       根据体型大小选择矩形FOV,以前后方向为相位编码方向,以左右方向为频率编码方向。

1.5 脂肪抑制技术

       频率选择饱和法与STIR技术均可以应用于肝脏平扫序列,但STIR技术扫描时间较长,信噪比较低,一般在中高场强MR机上多使用频率选择饱和法进行脂肪抑制。T2WI和T1WI增强时使用脂肪抑制技术是必不可少的,这样可以减少脂肪引起的运动伪影,提高图像组织对比,增加增强扫描的效果,判断是否含有脂肪成分。

1.6 化学位移成像(chemical shift imaging)技术

       利用同一像素内水和脂肪含量不同而成像信号不同。正相位(in phase)时信号无改变,而在反相位(opposed-phase)时,当同一像素内均为水或脂肪时信号无改变,当水脂混合存在时信号减低,由此可以探及与其他组织混杂存在的少量脂肪成分,包括细胞内脂质沉积和少量散在分布的成熟脂肪细胞。在肝脏MRI检查中,此项技术尤其对含脂肪成分的肿瘤和肿瘤样病变有重要作用,如不均质脂肪肝、肝细胞肝癌、肝细胞腺瘤、肝脏血管平滑肌脂肪瘤等[3]

1.7 增强扫描

       单期增强扫描虽然可以提供一定诊断信息,但是价值有限,在中高场强MR机上应常规采用多期动态增强扫描技术,首选三维容积内插快速扰相GRE T1WI序列检查[4],同时施加脂肪抑制技术。对比剂常规使用细胞外液对比钆喷酸葡甲胺盐(如马根维显、欧乃影等),也可采用新型的肝特异性对比剂[钆塞酸二钠注射液(普美显)],其可在完成动态增强成像后于肝细胞特异性摄取期显示肝细胞摄取情况、肝脏病变情况及胆道分泌情况。常规的动态增强扫描时相应该至少包括肝脏动脉期20~25 s、门脉期60~70 s、平衡期3 ~5 min三个时相,视病变具体情况酌情增加延迟期扫描[5]。由于MRI较CT而言没有辐射,在患者屏气配合好的情况下可以进行更多时相扫描,推荐6~9个多时相扫描,每个时相间患者呼吸换气,可以提供病变动态增强变化过程,当然由于每次屏气状态的差异很难直接得到时间-强化曲线,但仍可以得到更多的诊断信息。

1.8 扩散加权成像(diffusion weighted imaging, DWI)

       近年来DWI技术越来越受到人们关注,尤其是全身DWI (whole body DWI)技术的应用使人们对DWI技术的应用前景充满乐观,目前在肝脏的应用主要包括病变检出、定性诊断(良恶性以及不同病理类型)、疗效的评估等[6]。检查所用b值多为600~ 1000 s/mm2,b值较小时不能反映不同组织内水分子运动的真实情况,而b值较大时各种伪影较为明显,图像变形严重,干扰观察[6]。在DWI上肝脏多数肿瘤和肿瘤样病变扩散受限,呈高信号(囊肿除外),较为容易检出,但在定性诊断方面各家分歧较大。Agnello等[7]认为使用600 s/mm2以上b值检出时肝脏病变与正常肝组织、肝脏良恶性病变的ADC(apparent diffusion coefficient)值差异有统计学意义,可以用作诊断,但难以鉴别不同病理类型,以1.37× 10-3 mm2/s为诊断界值鉴别肝细胞肝癌和肝脏局灶结节性增生的敏感度及特异度分别为70%及76%。但是也有其他学者得出相反的结果,他们认为正常肝组织与良性肝细胞性肿物之间、良性肝细胞性肿物与肝细胞肝癌或肝脏转移瘤之间ADC值差异无显著意义[8,9,10]。笔者也比较同意DWI和ADC在鉴别肝脏肿瘤的良恶性上作用有限,尤其是在肝细胞腺瘤、局灶结节性增生、肝脓肿、肝细胞肝癌伴坏死、黏液性囊腺癌上DWI鉴别更为困难[6];另一方面DWI在检出肝脏病变上的能力还是得到大家认可的[11,12]

       总之,DWI对于肝脏病变的检出帮助较大,但尚不能独立进行定性诊断,仍需结合常规MRI检查形态学、信号改变以及强化形式做出最终诊断。在疗效评估方面,普遍认为不同的治疗方式ADC值有不同的变化过程,但总体来讲治疗后ADC值的持续升高说明治疗有效,病变好转[6],但目前此方面的研究尚在起步阶段,有待更多的研究结果。

1.9 MR波谱(magnetic resonance spectroscopy,MRS)

       肝脏的MRS研究明显滞后于脑和前列腺,目前其研究的性质远大于临床应用[13,14],以往较多的研究集中在动物实验和体外肝组织或培养肝细胞的31P谱、1H谱上,且主要应用慢性肝病的研究[15],而31P谱需要特殊的线圈以及31P自然含量较低使其无法在临床普及。近年来1H谱在肝脏肿瘤上的研究表明,在肝细胞肝癌中胆碱峰会有升高,但此指标尚难以准确对良恶性做出判断[16],肝脏MRS在肿瘤中应用价值还有待进一步研究。

2 肝脏肿瘤及肿瘤样病变的诊断思路

2.1 背景

       临床病史十分重要,肝脏与肺、骨、脑同属转移瘤好发部位,如果有明确的恶性肿瘤病史,肝脏出现多发实性结节几乎可以肯定是转移瘤。

       中国是肝炎大国,中国以HBV感染为主,HBV、HCV感染对肝硬化及肝细胞肝癌的发生贡献极大[17],肝脏整体背景情况对肝脏肿瘤及肿瘤样病变诊断帮助很大,肝硬化在MRI上表现比CT和超声更为明显,在有肝硬化背景的情况下发现肝脏单发实性肿物肝细胞肝癌的可能性极大。

2.2 定位

       多数情况下肝脏占位性病变定位不成问题,当病变位于肝脏边缘或凸向肝被膜外生长时需要与来源于肝周腹膜、胃、胰腺、肾上腺、肾脏的病变鉴别,此时MRI多平面扫描有助于定位诊断(图1)。当肝左外叶向左后方突起,形成獭尾肝时(图2),发生在此处的病变易误诊为其他脏器来源,需仔细观察。当病变同时侵犯肝脏和胆囊时,多为胆囊癌侵犯肝脏,少有肝脏病变侵犯胆囊(图3)。

图1  腺瘤。病变位于肝右叶下缘,冠状面扫描观察效果更好
图2  獭尾肝。肝脏左叶达左侧腋中线
图3  胆囊癌。病变同时侵犯胆囊与肝脏
图4  肝囊肿。结节边界清楚,T1WI低信号(A),T2WI脂肪抑制高亮信号(B),增强扫描无强化(C,D)
Fig. 1  Hepatic cellular adenoma. The lesion located at the inferior margin of right lobe of liver, the coronal image is better (which was displayed better on coronal image).
Fig. 2  Beaver tail liver. Left lobe of liver extented to left midaxillary line.
Fig. 3  Gallbladder cancer. The tumor invaded both gallbladder and liver.
Fig. 4  Hepatic cyst. Axial T1-weighted image demonstrates a well-circumscribed nodule with signal hypointense relative to that of surrounding liver parenchyma (A). The nodule shows high marked signal intensity to that of surrounding liver parenchyma on axial fat-suppressed T2-weighted image (B). Contrast-enhanced T1-weighted fat-suppressed MR images depict non-enhancement within the nodule (C and D).

2.3 单发与多发

       肝脏多发肿瘤或肿瘤样病变按其发病率依次为囊肿、血管瘤、转移瘤、再生结节和或不典型增生结节、局灶结节性增生、肝细胞腺瘤,一般再根据背景情况、囊实性、强化表现等信息较为容易做出正确诊断。而单发病变情况就较为复杂,虽然第一位肯定是肝细胞肝癌,但还有种类繁多的各类病变需要仔细分析、鉴别。

2.4 囊实性

       囊性病变中,如果为多发,第一位的是囊肿(图4);单发的囊性病变较少,需要考虑到胆管囊腺瘤(薄壁有分隔囊性肿物)和胆管囊腺癌(有壁结节、分隔薄厚不均的囊性肿物) (图5)、包虫病(图6)、脓肿(图7);单发的囊性转移瘤(图8)需要根据病史、原发肿瘤病理类型以及既往肝脏情况才能做出诊断。

图5  肝内胆管囊腺癌。肝左叶囊性肿物,T1WI低信号(A),T2WI高亮信号(B),增强扫描无强化(C,D),内壁可见多发壁结节,增强扫描可见明显强化
图6  包虫病。肝左叶肿物边界清楚,T1WI均匀低信号(A),T2WI脂肪抑制为混杂高信号(B),增强扫描无强化(C),CT平扫示囊内及囊壁钙化
图7  肝脓肿。T1WI示低信号肿物(A),T2WI脂肪抑制示高亮信号肿物(B),增强扫描(C,D)示囊壁渐进性强化,囊内容物不强化
Fig. 5  Intrahepatic biliary cystadenocarcinoma. Axial T1-weighted image (A) and axial fat-suppressed T2-weighted image (B) demonstrates a predominantly cystic mass on the left lobe of liver. Cystic regions of mass shows signal intensity similar to that of fluid on T1-and T2-weighted images. Contrast-enhanced axial and coronal T1-weighted fat-suppressed MR images depict multiple nodular enhancement of solid components on the cystic wall and non-enhancement of cystic region (C and D).
Fig. 6  Echinococcosis. Axial T1-weighted image demonstrates a well-circumscribed mass with homogeneously low signal intensity to that of surrounding liver parenchyma (A). The mass shows heterogeneous hyperintense to that of surrounding liver parenchyma on axial fat-suppressed T2-weighted image (B). Contrast-enhanced T1-weighted fat-suppressed MR image depicts non-enhancement within the mass (C). Plane CT shows calcification within the cyst and on the cystic wall (D).
Fig. 7  Hepatic abscess. A cystic mass shows hypointense on axial T1-weighted image (A) and marked hyperintense to that of surrounding liver parenchyma on axial fat-suppressed T2-weighted image (B). Contrast-enhanced T1-weighted fat-suppressed MR images depict gradually enhanced cystic wall and non-enhancement within the mass (C and D).
图8  肝脏囊性转移瘤。结节边界清楚,T1WI低信号(A),T2WI高亮信号(B),信号与单纯囊肿相仿
图9  肝细胞肝癌,门静脉瘤栓。T2WI脂肪抑制(A)和增强扫描(B)示门脉主干增宽,其内有瘤栓;增强扫描(C)示肝脏原发肝细胞肝癌
图10  肝脏转移瘤伴血管穿行。增强扫描(A,B)示血管穿行于囊性肿物
图11  肝脏淋巴瘤。T1WI(A)、T2WI脂肪抑制(B)、增强扫描(C)示肝脏肿物包绕血管,但未侵犯血管
图12  肝细胞肝癌伴出血。T1WI正相位(A)示肝脏肿物中心高信号,T1WI反相位(B)示高信号灶信号未降低,提示出血
图13  肝脏神经内分泌癌伴出血。T1WI正相位(A)示肝脏肿物内高信号灶,T2WI脂肪抑制(B)示原高信号灶呈低信号,提示出血
图14  肝硬化再生结节(RN)。肝脏弥漫微小结节,T1WI(A)等高信号,T2WI脂肪抑制为低信号
Fig. 8  Cystic metastasis of liver. A well-circumscribed nodule shows signal intensity similar to that of simple cyst on T1-and T2-weighted images (A and B).
Fig. 9  Hepatocellular carcinoma with portal vein tumor thrombus. fat-suppressed T2-weighted image (A) and contrast-enhanced T1-weighted fat-suppressed MR image (B) demonstrates broadening main portal vein filled with thrombus. contrast-enhanced T1-weighted fat-suppressed MR image (C) shows the primary HCC.
Fig. 10  Hepatic metastasis with central vessel. Contrast-enhanced T1-weighted fat-suppressed MR images show cystic mass with central vessel passing through (A and B).
Fig. 11  Hepatic lymphoma. Axial T1-weighted image (A), axial fat-suppressed T2-weighted image (B) and contrast-enhanced T1-weighted fat-suppressed MR image (C) demonstrate hepatic mass enveloping the vessel without involvement.
Fig. 12  Hepatocellular carcinoma with hemorrhage. Axial T1-weighted image in-phase demonstrates high signal intensity in the center of the mass (A). High signal of that area did not decrease on axial T1-weighted image opposed-phase which indicate hemorrhage (B).
Fig. 13  Hepatic neuroendocrine carcinoma with hemorrhage. Axial T1-weighted image in-phase demonstrates area with high signal intensity in the mass (A). Fat-suppressed T2WI shows hypointense of that area which indicate hemorrhage (B).
Fig. 14  Regeneration nodule. Axial T1-weighted image demonstrates diffuse tiny nodules with slight hyperintense (A). The nodules shows hypointense on axial fat-suppressed T2-weighted image (B).

2.5 血管情况

       如果肝脏肿物同时出现门静脉瘤栓(图9),肝细胞肝癌可能性极大。动脉期扫描发现肿物有异常的供血动脉,亦提示肝细胞肝癌的可能性极大。单发肿物有血管穿行以转移瘤和淋巴瘤可能大。形如单发肿物的转移瘤往往与肝内胆管细胞癌难以鉴别,如肿物内有血管穿行说明肿物为多发结节融合而成,将血管推挤在中央(图10)。淋巴瘤呈形态不规则状生长,可以包绕血管生长,但不侵犯血管(图11)。

3 MRI异常征象分析

       (1) T1WI低信号、T2WI高信号是多数肿瘤的表现,不具特征性。(2) T1WI低信号、T2WI低信号提示钙化或气体。(3) T1WI高信号、T2WI低信号多提示出血或有顺磁性物质成分,出血常见于肝细胞肝癌(图12)、肝细胞腺瘤、神经内分泌肿瘤(图13);顺磁性物质见于恶性黑色素瘤。弥漫的T1WI高信号、T2WI低信号小结节提示再生结节(图14)。(4) T1WI和T2WI高信号、T2WI脂肪抑制低信号提示有脂肪成分,成片的脂肪成分多见于血管平滑肌脂肪瘤[3]。(5)化学位移成像反相位信号降低见于弥漫性脂肪肝、局灶性脂肪肝(图15)、肝细胞肝癌(图16)、肝细胞腺瘤(图17)、血管平滑肌脂肪瘤[3]图18)。弥漫性脂肪肝在反相位上呈信号减低,如有部分肝组织未脂肪变性则在反相位上呈高信号类肿物影;相反局灶性脂肪肝脂肪变性部分肝组织在反相位上呈信号减低类肿物影;出现这些情况时在超声或CT上往往误以为肿瘤类病变。肝细胞腺瘤和肝细胞肝癌尤其是高分化肝细胞肝癌容易发生脂肪变性,以往认为肝细胞腺瘤脂肪表现的情况较肝细胞肝癌更多见,但由于肝细胞腺瘤的发病率极低[18],实际上肝细胞肝癌的脂肪变性的情况更多一些。血管平滑肌脂肪瘤的大片脂肪成分多数在普通脂肪抑制序列即可反映出来,而化学位移成像可以将少量、小灶、散在分布的脂肪成分检出。(6) T2WI等信号多见于局灶性结节增生(FNH)、凝固性坏死、肝细胞腺瘤(HCA)等[19]图19)。FNH与HCA病理上均是由排列异常、紊乱的肝细胞构成,其信号接近正常肝实质,FNH多数在T2WI上呈等信号,而部分HCA在T2WI上呈中高或略高信号。凝固性坏死是因为组织蛋白质凝固,而变为灰白色或黄白色比较干燥结实的凝固体,单纯凝固性坏死在T2WI上呈等信号,如果伴有不同程度的液化坏死可以表现为局灶中高信号(图19D)。(7) DWI扩散受限和ADC值减低提示恶性病变的可能。如前所述其对于良恶性判断价值往往是辅助形态学和强化形式进行诊断,一般ADC值在1.4×10-3 mm2/s左右作为诊断恶性界值标准[7],低于1.4×10-3 mm2/s为恶性,但因为实性良恶性病变的ADC值重叠较多,其准确性有限(图20)。肝脏淋巴瘤像其他部位的淋巴瘤一样,往往扩散受限更为明显,ADC值更低,甚至在1.0×10-3 mm2/s以下,这对诊断淋巴瘤有提示意义。(8)强化形式:①无强化,囊肿、凝固性坏死、包虫病、脓肿(图21);动脉期高血供,血管瘤、FNH、肝细胞腺瘤、血管平滑肌脂肪瘤、肝细胞肝癌、少数转移瘤、神经内分泌肿瘤(图22)。动脉期低血供,再生结节和不典型增生结节、寄生虫感染、肉芽肿型病变、炎性成肌纤维细胞瘤、胆管细胞癌、多数的转移瘤、肉瘤、淋巴瘤等(图23)。②延迟期强化(图24),血管瘤、肉芽肿型病变、炎性成肌纤维细胞瘤、肝内胆管细胞癌、肉瘤、淋巴瘤等。③延迟期包膜环形强化(图25),肝细胞肝癌、肝细胞腺瘤、血管平滑肌脂肪瘤。④中央星芒状瘢痕延迟扫描强化为FNH(图26A),不强化见于纤维层样肝细胞癌(图26B)。⑤边缘厚壁环形强化(图27),单发者见于脓肿、肉芽肿型病变、寄生虫感染,多发者见于转移瘤[4,5]

       综合应用临床信息、病变影像学特点、MRI特有征象对绝大多数肝脏肿瘤及肿瘤样病变可以做出准确诊断,但是部分病变之间影像表现重叠较大,如肝细胞肝癌、肝细胞腺瘤、少脂型血管平滑肌脂肪瘤均可以表现为动脉期高血供、门脉期及平衡期流出、延迟期包膜强化,鉴别较为困难;又如肉芽肿型病变、炎性成肌纤维细胞瘤、肉瘤、淋巴瘤属罕见病例,发病率低,经验有限,不易诊断;再如混合性肝癌(肝细胞肝癌与肝内胆管细胞癌)同时兼有两种组织成分,表现更不典型,为诊断带来更多挑战。但是熟练掌握肝脏肿瘤及肿瘤样病变的诊断思路,了解常见MRI征象是做出诊断与鉴别诊断的基础。

图15  局灶脂肪肝。CT平扫(A)示肝脏低密度肿物,T1WI正相位(B)示等信号肿物,T1WI反相位(C)示信号减低,提示局灶脂肪肝
图16  肝细胞肝癌伴脂肪变性。T1WI正相位(A)肝脏肿物为均匀低信号,T1WI反相位(B)肿物中心区域信号降低,提示脂肪成分
图17  肝细胞腺瘤伴脂肪变性。T1WI正相位(A)肝脏肿物为不均匀低信号,T1WI反相位(B)肿物部分区域信号降低,提示脂肪成分
图18  肝脏血管平滑肌脂肪瘤伴脂肪。T1WI正相位(A)肝脏肿物为不均匀低信号,T1WI反相位(B)肿物部分区域信号降低,提示脂肪成分
图19  T2WI等信号结节。局灶性结节增生(A),肝细胞腺瘤(B),凝固坏死(C),凝固坏死伴液化坏死(D)
Fig. 15  Focal fatty liver. Plane CT scan demonstrates hypodensity area of the liver (A). The signal of that area is isointense on axial T1-weighted image in-phase (B) and low on axial T1-weighted image opposed-phase (C), which are suggestive of focal fatty liver.
Fig. 16  Hepatocellular carcinoma with fatty degeneration. Axial T1-weighted image in-phase demonstrates a mass in the right lobe of liver with homogeneously low signal intensity to that of surrounding liver parenchyma (A). Axial T1-weighted image opposed-phase shows signal loss in the central area of the mass which are suggestive of lipid component (B).
Fig. 17  Hepatocellular adenoma with lipid degeneration. Axial T1-weighted image in-phase demonstrates a mass in the left lobe of liver with heterogeneously low signal intensity to that of surrounding liver parenchyma (A). Axial T1-weighted image opposed-phase shows signal loss in some area of the mass which indicate lipid component (B).
Fig. 18  Hepatic angiomyolipoma with lipid component. Axial T1-weighted image in-phase demonstrates a mass in the right lobe of liver with heterogeneously low signal intensity to that of surrounding liver parenchyma (A). Axial T1-weighted image opposed-phase shows signal loss in some area of the mass which indicate lipid component (B).
Fig. 19  Isointense nodule on fat-suppressed T2-weighted image. FNH (A), hepatocellular adenoma (B), coagulative necrosis (C), coagulative necrosis accompanied with liquefactive necrosis (D).
图20  扩散加权成像表现为高信号病变。血管瘤(A),FNH (B),血管平滑肌脂肪瘤(C),寄生虫感染(D),DN (E),肝细胞肝癌(F),胆管细胞癌(G),转移瘤(H)
图21  无强化病变。囊肿(A),凝固坏死(B),包虫病(C),脓肿(D)
Fig. 20  Lesions with diffusion restricted on DWI. Hemangioma (A), FNH (B), angiomyolipoma (C), parasitic infection (D), DN (E), hepatocellular carcinoma (F), cholangiocarcinoma (G), metastasis (H).
Fig. 21  Lesions without enhancement. Cyst (A), coagulative necrosis (B), echinococcosis (C), hepatic abscess (D).
图22  动脉期高血供肿物。血管瘤(A),FNH (B),肝细胞腺瘤(C),血管平滑肌脂肪瘤(D),肝细胞肝癌(E),转移瘤(F)
图23  动脉期低血供病变。RN (A,B),肉芽肿(C),寄生虫感染(D),胆管细胞癌(E),转移瘤(F),肉瘤(G),淋巴瘤(H)
图24  延迟期强化肿物。血管瘤(A),肉芽肿病变(B),炎性成肌纤维母细胞瘤(C),胆管细胞癌(D),肉瘤(E),淋巴瘤(F)
图25  延迟期包膜强化。肝细胞肝癌(A),肝细胞腺瘤(B),血管平滑肌脂肪瘤(C)
图26  FNH伴延迟期中央瘢痕强化(A),纤维板层样肝细胞伴延迟期中央瘢痕不强化(B)
图27  边缘环形强化。肝脓肿(A),肉芽肿病变(B),寄生虫感染(C),转移瘤(D)
Fig. 22  Hypervascular lesions on the arterial phase. Hemangioma (A), FNH (B), hepatocellular adenoma (C), angiomyolipoma (D), hepatocellular carcinoma (E), metastasis (F).
Fig. 23  Hypovascular lesions on the arterial phase. RN (A and B), granuloma (C), parasitic infection (D), cholangioma carcinoma (E), metastasis (F), sarcoma (G), lymphoma (H).
Fig. 24  Lesions with enhancement on the delayed phase. Hemangioma (A), granuloma (B), inflammatory myofibroblastic tumor (C), cholangioma carcinoma (D), sarcoma (E), lymphoma (F).
Fig. 25  Lesions with capsule enhancement on the delayed phase. Hepatocellular carcinoma (A), hepatocellular adenoma (B), angiomyolipoma (C).
Fig. 26  FNH with enhanced central scar on the delayed phase (A), fibrolamellar HCC with non-enhanced central scar on the delayed phase (B).
Fig. 27  Lesions with ring enhancement. Hepatic abscess (A), granuloma (B), parasitic infection (C), metastasis (D).

[1]
Campeau NG, Johnson CD, Felmlee JP, et al. MR imaging of the abdomen with a phased-array multicoil: prospective clinical evaluation. Radiology, 1995, 195(3): 769-776.
[2]
Keogan MT, Edelman RR. Technologic advances in abdominal MR imaging. Radiology, 2001, 220(2): 310-320.
[3]
Prasad SR, Wang H, Rosas H, et al. Fat-containing lesions of the liver: radiologic-pathologic correlation. Radiographics, 2005, 25(2): 321-331.
[4]
Elsayes KM, Narra VR, Yin Y, et al. Focal hepatic lesions: diagnostic value of enhancement pattern approach with contrast-enhanced 3D gradient-echo MR imaging. Radiographics, 2005, 25(5): 1299-1320.
[5]
Kim TK, Lee KH, Jang HJ, et al. Analysis of gadobenate dimeglumine-enhanced MR findings for characterizing small (1—2 cm) hepatic nodules in patients at high risk for hepatocellular carcinoma. Radiology, 2011, 259(3): 730-738.
[6]
Malayeri AA, El Khouli RH, Zaheer A, et al. Principles and applications of diffusion-weighted imaging in cancer detection, staging, and treatment follow-up. Radiographics, 2011, 31(6): 1773-1791.
[7]
Agnello F, Ronot M, Valla DC, et al. High-b-value diffusion-weighted MR imaging of benign hepatocellular lesions: quantitative and qualitative analysis. Radiology, 2012, 262(2): 511-519.
[8]
Taouli B, Vilgrain V, Dumont E, et al. Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: prospective study in 66 patients. Radiology, 2003, 226(1): 71-78.
[9]
Parikh T, Drew SJ, Lee VS, et al. Focal liver lesion detection and characterization with diffusion-weighted MR imaging: comparison with standard breath-hold T2-weighted imaging. Radiology, 2008, 246(3): 812-822.
[10]
Taouli B. Diffusion-weighted MR imaging for liver lesion characterization: a critical look. Radiology, 2012, 262(2): 378-380.
[11]
Coenegrachts K, Delanote J, Ter Beek L, et al. Improved focal liver lesion detection: comparison of single-shot diffusion-weighted echoplanar and single-shot T2 weighted turbo spin echo techniques. Br J Radiol, 2007, 80(955): 524-531.
[12]
Bruegel M, Gaa J, Waldt S, et al. Diagnosis of hepatic metastasis: comparison of respiration-triggered diffusion-weighted echo-planar MRI and five t2-weighted turbo spin-echo sequences. AJR Am J Roentgenol, 2008, 191(5): 1421-1429.
[13]
Dagnelie PC, Leij-Halfwerk S. Magnetic resonance spectroscopy to study hepatic metabolism in diffuse liver diseases, diabetes and cancer. World J Gastroenterol, 2010, 16(13): 1577-1586.
[14]
You KZ, Shen ZW, Cao Z, et al. Metabolic changes of liver cell apoptosis: an in vivo 1H magnetic resonance spectroscopy study. Chin J Magn Reson Imaging,2011, 2(4): 290-295.
尤克增,沈智威,曹震, 等. 活体肝细胞凋亡代谢改变的质子磁共振频谱研究. 磁共振成像, 2011, 2(4): 290-295.
[15]
Corbin IR, Buist R, Peeling J, et al. Hepatic 31P MRS in rat models of chronic liver disease: assessing the extent and progression of disease. Gut, 2003, 52(7): 1046-1053.
[16]
Fischbach F, Schirmer T, Thormann M, et al. Quantitative proton magnetic resonance spectroscopy of the normal liver and malignant hepatic lesions at 3.0 Tesla. Eur Radiol, 2008, 18(11): 2549-2558.
[17]
Sherman M. Epidemiology of hepatocellular carcinoma. Oncology, 2010, 78 (Suppl 1): 7-10.
[18]
Lin H, van den Esschert J, Liu C, et al. Systematic review of hepatocellular adenoma in China and other regions. J Gastroenterol Hepatol, 2011, 26(1): 28-35.
[19]
Curvo-Semedo L, Brito JB, Seco MF, et al. The hypointense liver lesion on T2-weighted MR images and what it means. Radiographics, 2010, 30(1): e38.

上一篇 铁超负荷兔模型3.0 T MRI定量肝铁沉积可行性研究
下一篇 Syngo MR外周神经成像
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2