Share:
Share this content in WeChat
X
Clinical Article
Influence of liver iron overload and steatosis on ADC value in evaluating liver fibrosis in patients with chronic hepatitis B
PAN Zhongxian  LI Zhujing  LIAO Jiong  HAO Liantao  MENG Fanqi  HU Yuanming  HUANG Rong  YANG Xiaoyan  WEN Wucheng  CHEN Yueyao 

Cite this article as: Pan ZX, Li ZJ, Liao J, et al. Influence of liver iron overload and steatosis on ADC value in evaluating liver fibrosis in patients with chronic hepatitis B[J]. Chin J Magn Reson Imaging, 2021, 12(7): 18-23. DOI:10.12015/issn.1674-8034.2021.07.004.


[Abstract] Objective To investigate the effect of hepatic iron overload and steatosis on ADC value in evaluating liver fibrosis in patients with chronic hepatitis B (CHB). Materials andMethods Seventy-three patients with CHB were included in this study. R2* and proton density fat fraction (PDFF) were measured by multi-echo Dixon for the diagnosis of hepatic iron overload and steatosis, respectively. Patients were grouped according to the presence or absence of liver iron overload and steatosis. The differences of ADC values between the groups were estimated. Liver fibrosis grading was performed according to an alternative standard recommended by WHO. The correlation between ADC​​ values and R2*, PDFF, fibrosis grade, age, gender was analysed. Multiple linear regression analysis was performed. The correlation between ADC values and fibrosis grade was analysed after excluding patients with liver iron overload or/and steatosis.Results The ADC values of the liver iron overload group and the steatosis group were significantly reduced (P<0.05). R2*, PDFF, and liver fibrosis grade were all negatively correlated with ADC values (r=-0.457, -0.298, -0.385, respectively, P<0.05). And they were affecting factors of ADC values (standardized regression coefficient=-0.307, -0.382, -0.412; t=-2.666, -3.331, -3.510; respectively, P<0.05). After excluding patients with liver iron overload or/and steatosis, the correlation between ADC value and liver fibrosis grade was significantly improved, and the correlation coefficients were -0.573, -0.456, and -0.688, respectively, P<0.05.Conclusions Hepatic iron overload and steatosis could reduce the ADC value and additionally affect the correlation between ADC values and liver fibrosis grade. When using ADC value to evaluate liver fibrosis in patients with CHB, the influence of liver iron overload and steatosis should be noticed.
[Keywords] chronic hepatitis B;iron overload;fatty liver;liver fibrosis;diffusion weighted imaging;apparent diffusion coefficient

PAN Zhongxian1   LI Zhujing1   LIAO Jiong1   HAO Liantao1   MENG Fanqi1   HU Yuanming1   HUANG Rong2   YANG Xiaoyan1   WEN Wucheng1   CHEN Yueyao1*  

1 Department of Radiology, Shenzhen Traditional Chinese Medicine Hospital, the Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China

2 Department of Radiology, Peking University Shenzhen Hospital, Shenzhen 518036, China

Chen YY, E-mail: drchenyueyao@163.com

Conflicts of interest   None.

ACKNOWLEDGMENTS This research was supported by the National Natural Science Foundation of China (No. 81903960).
Received  2021-01-12
Accepted  2021-04-01
DOI: 10.12015/issn.1674-8034.2021.07.004
Cite this article as: Pan ZX, Li ZJ, Liao J, et al. Influence of liver iron overload and steatosis on ADC value in evaluating liver fibrosis in patients with chronic hepatitis B[J]. Chin J Magn Reson Imaging, 2021, 12(7): 18-23. DOI:10.12015/issn.1674-8034.2021.07.004.

1
Tapper EB, Lok AS. Use of Liver Imaging and Biopsy in Clinical Practice[J]. N Engl J Med, 2017, 377(8): 756-768. DOI: 10.1056/NEJMra1610570.
2
Petitclerc L, Sebastiani G, Gilbert G, et al. Liver fibrosis: review of current imaging and MRI quantification techniques[J]. J Magn Reson Imaging, 2017, 45(5): 1276-1295. DOI: 10.1002/jmri.25550.
3
Wang QB, Zhu H, Liu HL, et al. Performance of magnetic resonance elastography and diffusion-weighted imaging for the staging of hepatic fibrosis: a meta-analysis[J]. Hepatology, 2012, 56(1): 239-247. DOI: 10.1002/hep.25610.
4
Sandrasegaran K, Akisik FM, Lin C, et al. Value of diffusion-weighted MRI for assessing liver fibrosis and cirrhosis[J]. AJR Am J Roentgenol, 2009, 193(6): 1556-1560. DOI: 10.2214/ajr.09.2436.
5
Fujimoto K, Tonan T, Azuma S, et al. Evaluation of the mean and entropy of apparent diffusion coefficient values in chronic hepatitis C: correlation with pathologic fibrosis stage and inflammatory activity grade[J]. Radiology, 2011, 258(3): 739-748. DOI: 10.1148/radiol.10100853.
6
Bulow R, Mensel B, Meffert P, et al. Diffusion-weighted magnetic resonance imaging for staging liver fibrosis is less reliable in the presence of fat and iron[J]. Eur Radiol, 2013, 23(5): 1281-1287. DOI: 10.1007/s00330-012-2700-2.
7
Leitao HS, Doblas S, Garteiser P, et al. Hepatic fibrosis, inflammation, and steatosis: influence on the MR viscoelastic and diffusion parameters in patients with chronic liver disease[J]. Radiology, 2017, 283(1): 98-107. DOI: 10.1148/radiol.2016151570.
8
Zhao YZ, Gan YG, Zhou JL, et al. Accuracy of multi-echo Dixon sequence in quantification of hepatic steatosis in Chinese children and adolescents[J]. World J Gastroenterol, 2019, 25(12): 1513-1523. DOI: 10.3748/wjg.v25.i12.1513.
9
World Health Organization. Guidelines for the Prevention, Care and Treatment of Persons with chronic Hepatitis B infection. 2015.
10
Xiao G, Zhu S, Xiao X, et al. Comparison of laboratory tests, ultrasound, or magnetic resonance elastography to detect fibrosis in patients with nonalcoholic fatty liver disease: a meta-analysis[J]. Hepatology, 2017, 66(5): 1486-1501. DOI: 10.1002/hep.29302.
11
Gao YY, Zheng J, Liang P, et al. Liver fibrosis with two-dimensional us shear-wave elastography in participants with chronic hepatitis B: a prospective multicenter study[J]. Radiology, 2018, 289(2): 407-415. DOI: 10.1148/radiol.2018172479.
12
Lemoine M, Shimakawa Y, Nayagam S, et al. The gamma-glutamyl transpeptidase to platelet ratio (GPR) predicts significant liver fibrosis and cirrhosis in patients with chronic HBV infection in West Africa[J]. Gut, 2016, 65(8): 1369-1376. DOI: 10.1136/gutjnl-2015-309260.
13
Park HS, Choe WH, Han HS, et al. Assessing significant fibrosis using imaging-based elastography in chronic hepatitis B patients: Pilot study[J]. World J Gastroenterol, 2019, 25(25): 3256-3267. DOI: 10.3748/wjg.v25.i25.3256.
14
Hu FB, Yang R, Huang ZX, et al. 3D Multi-echo dixon technique for simultaneous assessment of liver steatosis and iron overload in patients with chronic liver diseases: a feasibility study[J]. Quant Imaging Med Surg, 2019, 9(6): 1014-1024. DOI: 10.21037/qims.2019.05.20.
15
Caussy C, Alquiraish MH, Nguyen P, et al. Optimal threshold of controlled attenuation parameter with MRI-PDFF as the gold standard for the detection of hepatic steatosis[J]. Hepatology, 2018, 67(4): 1348-1359. DOI: 10.1002/hep.29639.
16
Henninger B, Alustiza J, Garbowski M, et al. Practical guide to quantification of hepatic iron with MRI[J]. Eur Radiol, 2020, 30(1): 383-393. DOI: 10.1007/s00330-019-06380-9.
17
Yang Y, Li J, Zhou J, et al. Advances in the evaluation of hepatic fat and iron in nonalcoholic fatty liver disease with Dixon magnetic resonance imaging[J]. Int J Med Radiol, 2020, 43(2):206-210.
18
Campo CA, Hernando D, Schubert T, et al. Standardized approach for ROI-based measurements of proton density fat fraction and R2* in the liver[J]. AJR Am J Roentgenol, 2017, 209(3): 592-603. DOI: 10.2214/ajr.17.17812.
19
Middleton MS, Van Natta ML, Heba ER, et al. Diagnostic accuracy of magnetic resonance imaging hepatic proton density fat fraction in pediatric nonalcoholic fatty liver disease[J]. Hepatology, 2018, 67(3): 858-872. DOI: 10.1002/hep.29596.
20
Feier D, Balassy C, Bastati N, et al. The diagnostic efficacy of quantitative liver MR imaging with diffusion-weighted, SWI, and hepato-specific contrast-enhanced sequences in staging liver fibrosis--a multiparametric approach[J]. Eur Radiol, 2016, 26(2): 539-546. DOI: 10.1007/s00330-015-3830-0.
21
Bonekamp S, Torbenson MS, Kamel IR. Diffusion-weighted magnetic resonance imaging for the staging of liver fibrosis[J]. J Clin Gastroenterol, 2011, 45(10): 885-892. DOI: 10.1097/MCG.0b013e318223bd2c.
22
Chandarana H, Do RK, Mussi TC, et al. The effect of liver iron deposition on hepatic apparent diffusion coefficient values in cirrhosis[J]. AJR Am J Roentgenol, 2012, 199(4): 803-808. DOI: 10.2214/ajr.11.7541.
23
Wáng YXJ, Wang X, Wu P, et al. Topics on quantitative liver magnetic resonance imaging[J]. Quant Imaging Med Surg, 2019, 9(11): 1840-1890. DOI: 10.21037/qims.2019.09.18.
24
Mehta KJ, Farnaud SJ, Sharp PA. Iron and liver fibrosis: mechanistic and clinical aspects[J]. World J Gastroenterol, 2019, 25(5): 521-538. DOI: 10.3748/wjg.v25.i5.521.
25
Sener RN. Echo-planar and gradient-echo diffusion MRI of normal brain iron in the globus pallidus[J]. Clin Imaging, 2002, 26(6): 371-374. DOI: 10.1016/s0899-7071(02)00487-4.
26
Maze J, Vesselle G, Herpe G, et al. Evaluation of hepatic iron concentration heterogeneities using the MRI R2* mapping method[J]. Eur J Radiol, 2019, 116: 47-54. DOI: 10.1016/j.ejrad.2018.02.011.
27
Guiu B, Petit JM, Capitan V, et al. Intravoxel incoherent motion diffusion-weighted imaging in nonalcoholic fatty liver disease: a 3.0-T MR study[J]. Radiology, 2012, 265(1): 96-103. DOI: 10.1148/radiol.12112478.
28
Hansmann J, Hernando D, Reeder SB. Fat confounds the observed apparent diffusion coefficient in patients with hepatic steatosis[J]. Magn Reson Med, 2013, 69(2): 545-552. DOI: 10.1002/mrm.24535.
29
Taouli B, Tolia AJ, Losada M, et al. Diffusion-weighted MRI for quantification of liver fibrosis: preliminary experience[J]. AJR Am J Roentgenol, 2007, 189(4): 799-806. DOI: 10.2214/ajr.07.2086.
30
Shi JP, Fan JG, Wu R, et al. Prevalence and risk factors of hepatic steatosis and its impact on liver injury in Chinese patients with chronic hepatitis B infection[J]. J Gastroenterol Hepatol, 2008, 23(9): 1419-1425. DOI: 10.1111/j.1440-1746.2008.05531.x.

PREV Semiquantitative and quantitative analyses of dynamic contrast-enhanced magnetic resonance imaging in the differentiation between malignant and benign thyroid nodules
NEXT Comparation of amide proton transfer-weighted and T2 mapping in quantifying rectal cancer with and without chemotherapy: a preliminary study
  



Tel & Fax: +8610-67113815    E-mail: editor@cjmri.cn