分享:
分享到微信朋友圈
X
临床研究
神经突方向离散度与密度成像对帕金森病脑深部核团的临床研究
黄小盼 韩鸿宇 王敏 马东辉 李沛珊 王红

Cite this article as: Huang XP, Han HY, Wang M, et al. Clinical research of NODDI technology in deep brain nucleus of Parkinson's disease[J]. Chin J Magn Reson Imaging, 2021, 12(3): 6-9, 19.本文引用格式:黄小盼, 韩鸿宇, 王敏, 等. 神经突方向离散度与密度成像对帕金森病脑深部核团的临床研究[J]. 磁共振成像, 2021, 12(3): 6-9. DOI:10.12015/issn.1674-8034.2021.03.002.


[摘要] 目的 利用神经突方向离散度与密度成像(neurite orientation dispersion and density imaging,NODDI)探索帕金森病患者(Parkinson's disease,PD)灰质核团微结构变化。材料与方法 对36例PD患者和26例健康者进行MRI扫描和NODDI图像后处理,比较两组神经突体积分数(intracellular volume fraction,Vic)、神经突方向分散度(orientation dispersion index,ODI),通过受试者工作特征曲线(receiver operating characteristic curve,ROC曲线)评估不同核团Vic值诊断效能。结果 与对照组相比,PD患者左侧黑质(P<0.001)、丘脑(P=0.003)及右侧尾状核头(P=0.002)、壳核(P<0.001)、苍白球(P<0.001)、黑质(P<0.001)、红核(P<0.001)、丘脑(P=0.006) Vic值差异有统计学意义,且左侧黑质(P<0.001)及右侧尾状核头(P=0.038)、壳核(P=0.001)、苍白球(P=0.023)、黑质(P<0.001)、红核(P=0.023) ODI值差异有统计学意义。ROC曲线显示,右侧黑质、红核、苍白球、壳核Vic指标诊断PD的曲线下面积(area under curve,AUC)分别为0.861、0.788、0.852、0.843。此外,右侧黑质苍白球及黑质壳核Vic值联合诊断PD的AUC分别为0.925、0.921。结论 NODDI技术可以定性区分PD患者和健康人群,量化分析PD脑深部灰质核团微结构改变情况。Vic指标在黑质部位显示出最佳诊断效能,且黑质苍白球及黑质壳核的联合诊断的诊断效能均优于单一核团,这一发现为PD诊断提供新的神经影像学支持。
[Abstract] Objective To investigate microstructural changes of gray matter nucleus in people with Parkinson's Disease (PD) by neurite orientation dispersion and density imaging (NODDI). Materials andMethods Thirty-six PD patients and 26 healty volunteers underwent MRI and were divided into the case group and the control group, NODDI images were analyzed and processed. Intracellular volume fraction (Vic) and orientation dispersion index (ODI) from the case group were separately compared with those from the control group, and receiver operating characteristic curve (ROC) evaluated the diagnostic efficiency of different nucleus.Results The Vic values of left substantia nigra (P<0.001), thalamus (P=0.003), right caudate nucleus head (P=0.002), putamen (P<0.001), globus pallidus (P<0.001), substantia nigra (P<0.001), red nucleus (P<0.001) and thalamus (P=0.006) in PD patients were significantly different from those in the control group. Compared with the control group, the ODI values of left substantia nigra (P<0.001), right caudate nucleus head (P=0.038), putamen (P=0.001), globus pallidus (P=0.023) substantia nigra (P<0.001) and red nucleus (P=0.023) in PD patients showed significantly difference. Meanwhile, the ROC curve showed that area under curve (AUC) of the Vic values for PD's diagnosis were respectively 0.861, 0.788, 0.852, 0.843 in right substantia nigra, red nucleus, globus pallidus and putamen. In addition, the AUC of the combined diagnosis of substantia nigra and globus pallidus, substantia nigra and putamen were separately 0.925,0.921.Conclusion NODDI can qualitatively distinguish between PD patients and healthy volunteers, and quantitatively analyze microstructural changes of deep brain nucleus. And the joint diagnosis of nucleus can obtain higher value, which is helpful for PD's clinical diagnosis.
[关键词] 神经突方向离散度与密度成像;核团;帕金森病;磁共振成像;黑质纹状体
[Keywords] neurite orientation dispersion and density imaging;nucleus;parkinson's disease;magnetic resonance imaging;substantia nigra striatum

黄小盼    韩鸿宇    王敏    马东辉    李沛珊    王红 *  

新疆医科大学第二附属医院影像科,乌鲁木齐 830063

王红,E-mail:wangh_xj@163.com

作者利益冲突声明:全体作者均声明无利益冲突。


基金项目: 新疆维吾尔自治区自然科学基金 2019D01C227
收稿日期:2020-10-06
接受日期:2021-01-21
DOI: 10.12015/issn.1674-8034.2021.03.002
本文引用格式:黄小盼, 韩鸿宇, 王敏, 等. 神经突方向离散度与密度成像对帕金森病脑深部核团的临床研究[J]. 磁共振成像, 2021, 12(3): 6-9. DOI:10.12015/issn.1674-8034.2021.03.002.

       帕金森病是一种慢性不可逆的异质性神经系统疾病,临床上多表现为震颤、运动迟缓、僵硬等运动障碍及嗅觉减退、认知功能不全、睡眠障碍等非运动症状[1]。在帕金森病中,多巴胺能神经元的丢失和路易小体的积聚通常伴随着神经胶质细胞变性损伤、轴突脱髓鞘改变,细胞外小胶质细胞浓度的增加[2]。因此,检测具有多巴胺能神经的脑组织和沿着多巴胺能通路的细胞外微结构异常,对发现早期帕金森病的生物标志物有重要意义。

       目前,扩散张量成像(diffusion tensor imaging, DTI)[3]技术被广泛用于探索帕金森病黑质病理改变,其原理是评估水分子的扩散运动,反映水和细胞基质之间的相互作用,从而获得有关组织完整性的信息。其主要参数各向异性分数(fractional anisotropy, FA)主要反映神经纤维微结构情况。先前研究发现,PD患者黑质部位FA值较对照组显著降低[4, 5, 6],少数表现为FA值升高[7]或无明显差异[8]。另一项研究仅发现PD患者平均扩散系数增加[9]。这些研究结果表明DTI技术研究PD患者多能检测到黑质微结构的变化,但这些结果存在一定的异质性。并且FA值难以特异性的解释黑质结构潜在的病理变化,无法准确判断是由神经密度降低还是由脱髓鞘改变引起的,因此存在一定的局限性。

       相较于传统的DTI模型,最近发展的NODDI[10]新技术采用多室间隔组织模型,将脑组织微结构分为细胞内、细胞外及脑脊液,更接近于复杂的生物结构。本研究旨在利用NODDI新技术研究PD黑质纹状体微结构改变情况,并进一步阐明这些变化是由神经密度减少还是由轴突分散度引起的,为PD临床诊断提供新的神经影像学支持。

1 材料与方法

1.1 一般资料

       收集2019年12月至2020年6月在我院就诊的36例PD患者,其中男21例,女15例;年龄45~80岁,平均(61.44±7.69)岁。随机选取26例性别年龄相匹配的健康受试者,其中男16例,女10例;年龄42~75岁,平均年龄(60.15±6.83)岁。病例组纳入标准:(1)由我院帕金森病门诊专家依据《帕金森治疗指南(2018 年版)》诊断标准做出确诊;(2)均为右利手;(3)年龄在40~80岁之间,可配合检查者。排除标准:(1)严重心肾功能不全者;(2)有痴呆等神经或精神疾病史者;(3)外伤、脑梗死、中枢神经系统肿瘤、苍白球钙化等器质性改变者。研究方案经本院医学伦理委员会批准(批准文号:20190712-03),受试者均知情同意。

1.2 MRI扫描及数据处理

       通过飞利浦3.0 T MRI获得MR图像。利用自旋回波平面成像序列获得扩散加权图像,该序列由在前后相位编码方向沿32个各向同性扩散梯度获取的两个b值(1000、2000 s/mm²)组成。每一次DWI采集都使用无梯度图像(b=0)作为补充。序列参数如下:TR 3000 ms,TE 83 ms;FOV 200 mm×232 mm×119 mm;层厚5 mm,层数20层;DKI采集时间:309 s。扫描范围:顶叶至小脑。

       MR扫描得到的原始数据传至后处理工作台,将DKI序列通过Spin软件分离图像,dcm2niigui软件转换格式,用Matlab R2013a软件执行图像分析得到神经突体积分数(intracellular volume fraction,Vic)图、神经突方向分散度(orientation dispersionindex,ODI)图。

1.3 选取分析感兴趣区

       感兴趣区(region of interest, ROIs)由2名8年以上诊断经验的放射科主治医师双盲情况下多次测量取平均值,若出现意见不一致,则由另一名放射学诊断副主任医师协商。笔者以MRI常规序列T1WI、T2WI图像作为参考,选取ROIs分别获得Vic,ODI值(图1)。感兴趣区有:双侧苍白球、尾状核头和壳核以及黑质、红核、丘脑,分别比较两组各个核团的Vic、ODI值。不同核团Vic的ROI曲线下面积(图2)有所不同。

图1  男,59岁,PD患者,左上肢不自主抖动3年。A:为基底节层面Vic图,与对照组对比,右侧尾状核头、壳核、苍白球及双侧丘脑的Vic显著减低;B:为基底节层面ODI图,与对照组对比,右侧尾状核头、壳核、苍白球的ODI明显减低;C:为T2WI,未见明显异常信号;D:为黑质红核Vic图,与对照组相比,双侧黑质及右侧红核Vic显著降低;E:为黑质红核ODI图,与对照组相比,双侧黑质及右侧红核ODI明显降低;F:为T2WI,未见明显异常信号
Fig. 1  Male, 59 years old, PD disease, involuntary shaking of the left upper limb for 3 years. A was the Vic picture of the basal ganglia level, compared with the control group, the Vic values of right caudate nucleus head, putamen, globus pallidum and bilateral thalamus were significantly decreased. B was the ODI picture of basal ganglia level, compared with the control group, the ODI values of right caudate nucleus head, putamen and globus pallidus were significantly decreased. C was the T2WI image. No obvious abnormal signals were seen on the T2WI image. D was the Vic picture of the substantia nigra and the red nucleus, compared compared with the control group, the Vic values of bilateral substantia nigra and right red nucleus were significantly decreased. E was the ODI picture of the substantia nigra and the red nucleus, compared with the control group, the Vic values of bilateral substantia nigra and the right red nucleus were significantly decreased. F was the T2WI image. No obvious abnormal signals were seen on the T2WI image.
图2  PD患者灰质核团Vic值的ROC曲线。ROC分析显示:尾状核、壳核、苍白球、黑质、红核及丘脑中,右侧黑质Vic值曲线下面积最大,为0.861,诊断效能最佳
图3  黑质苍白球及黑质壳核Vic联合诊断PD的ROC曲线。两者AUC分别为0.925、0.921,显示出多核团Vic联合诊断的诊断效能优于单一核团,且诊断效能较好
Fig. 2  ROC curve of the Vic values in gray matter nucleus of PD patients. ROC analysis showed that in right caudate nucleus, putamen, globulus, red nucleus and bilateral substantia nigra and thalamus, the AUC of Vic value in the right substantia nigra was 0.861, which was the largest one and showed the best diagnostic efficiency.
Fig. 3  ROC curve of the combined diagnosis of substantia nigra and globus pallidus, substantia nigra and putamen. The AUC were 0.925 and 0.921, showing that the diagnostic efficiency of the combined diagnosis of multi-nucleus Vic was better than the single nuclei, and the diagnostic efficiency was good.

1.4 统计学分析

       所有数据均使用SPSS 22.0版进行统计分析。计数资料比较采用卡方检验,计量资料比较采用t检验。使用Kolmogorov-Smirnov检验来分析正态分布,临床变量均呈正态分布,用均数±标准差(x¯±s)表示。统计学显著性标准设为P<0.05。独立样本t检验用于评估ROIs的Vic、ODI值组间差异。用ROC曲线评估不同核团Vic值诊断效能。AUC为0.7~0.9时有一定准确性,>0.9准确性较高。

2 结果

       PD组和对照组年龄分布(P=0.498,独立样本t检验)接近匹配,性别无明显差异(P=0.8,卡方检验)。研究发现,与健康对照组相比,PD患者右侧尾状核、壳核、苍白球、红核及双侧黑质、丘脑Vic值显著降低(P<0.05)(表1),且右侧尾状核头、壳核、苍白球、红核及双侧黑质ODI值明显降低(P<0.05)(表2)。同时ROC曲线(图2)显示,PD患者Vic在右侧黑质部位AUC最大,为0.861,临界值为0.614,敏感度为93.3%,特异度为84.6%。最后,分别对右侧黑质苍白球、右侧黑质壳核的Vic值(图3)进行联合诊断,得出AUC面积为0.925,0.921,AUC均可达到90%以上,表明多核团联合诊断效能较任何单一核团的高。

表1  两组人群间Vic值的比较(x¯±s)
Tab. 1  Comparison of Vic values between the two groups (x¯±s)
表2  两组人群间ODI值的比较(x¯±s)
Tab. 2  Comparison of ODI values between the two groups (x¯±s)

3 讨论

3.1 NODDI基本原理及临床应用

       NODDI[10]是一种新兴的非侵入性的微结构成像技术,它基于磁共振扩散成像,但使用不同强度的扩散梯度来提供比DTI更具特异性的指标。主要参数有:Vic、ODI及脑脊液体积分数(isotropic volume fraction, Viso),神经突外体积分数(entracellular volume fraction, Vec)。其中Vic反映神经突密度,通常灰质中较低,白质中较高,若神经树突、轴突丢失或破坏时,Vic值预计会降低。ODI则描述突起方向变化,若白质中ODI增加,表明白质纤维束中的轴突组织紊乱,而灰质中ODI减少提示树突变薄。事实上,这种将细胞内组织分裂成轴突的分散和密度,是NODDI所独有的。

       目前,NODDI技术在中枢神经系统疾病中的相关研究较为成熟,比如自闭症、多发性硬化,中风[11, 12, 13]等。以往研究表明,NODDI在描述轴突取向、分散和密度变化方面有其独有的优势。

3.2 NODDI技术对PD脑灰质核团微结构的分析

       PD经典的运动功能障碍模型是皮质-基底节-丘脑运动回路[14]。基底节是该回路的关键节点,本研究以此为依据,利用NODDI技术检测PD患者黑质、尾状核、苍白球、壳核等脑深部灰质核团微结构情况。研究发现,脑灰质核团微结构发生广泛改变。以往研究者通过DTI,DKI技术发现PD患者锥体外系灰质核团显微结构的改变,但是FA值的特异性不够,而DKI参数难以解释核团微结构改变的潜在病理基础[15-16]

       首先,本研究结果显示黑质、壳核Vic、ODI较对照组明显降低,这与刘伟星等[17]报道结果相一致,黑质Vic的降低反映黑质轴突、树突密度的降低,引起神经细胞体积的缩小或数量的减少。而黑质、壳核ODI的减少则反映了树突变短和棘突数量的减少。而黑质多巴胺能神经元的损伤会对直接通路及间接通路[18]产生消极作用,进而导致苍白球神经元活性降低。

       其次,与Kamagata等[19, 20]报道不同点在于,本研究利用NODDI技术检测到PD患者苍白球Vic、ODI的降低,可能与患者的纳入标准及病程不一致有关。苍白球由梭形的多极神经元组成,通过抑制γ-氨基丁酸能通路,从而抑制丘脑活动,而丘脑可以向皮层运动区输出刺激从而激活运动[21]。笔者认为,PD患者的苍白球Vic、ODI减低,表明PD患者苍白球神经元存在丢失情况,一定程度上减轻了对丘脑的抑制作用,丘脑活动增加,进而导致运动激活增多。笔者还发现,与对照组相比,丘脑Vic减低,反映了该部位细胞数量的减少,这可能与丘脑神经细胞的损伤有关,丘脑活动减低,进而运动激活减少。综上,苍白球及丘脑微结构损伤均会增加PD运动障碍发生的可能性。

       这些灰质核团神经轴突的微结构损伤引起基底神经节结构的完整性受损,影响了整个运动控制回路,导致PD患者出现运动迟缓、僵硬及其他运动问题。

3.3 NODDI参数在PD中的诊断价值

       ROC分析显示,右侧黑质Vic曲线下面积最大,为0.861,敏感度93.3%,特异度84.6%。据报道,当PD的运动核心缺陷归因于多巴胺能黑质纹状体系统的丧失22,本研究中黑质中Vic的减少可以被认为是NODDI以良好的灵敏度捕获了黑质结构的神经元丢失。最后,本研究分别对右侧黑质壳核及黑质苍白球的Vic值进行联合诊断,得出AUC为0.921,0.925,临界值为0.624,0.535,表明:(1) Vic的多核团联合诊断低于临界值时,对PD的诊断提供影像学支持;(2)多核团联合诊断价值较任何单一核团的高,并且诊断效能较好,这两者均适合作为是否患该病的预测指标。

       本研究存在一定局限性。首先是样本量不够,在今后的研究中需增大样本量。其次,本研究纳入患者不够严谨,未考虑临床干预情况,可能对结果产生一定影响。最后,NODDI技术本质上是一种数学模型,在反映大脑微结构的真实情况缺乏一定准确性。

       综上所示,这些发现表明NODDI可以定性区分PD患者及健康人群,并且NODDI参数更直观、准确的检测到脑深部灰质核团神经突起的形态学变化,有助于加深对PD病理生理机制的理解,可以作为PD诊断神经影像学指标。

1
Kalia LV, Lang AE. Parkinson's disease. Lancet, 2015, 386: 896-912. DOI: 10.1016/S0140-6736(14)61393-3
2
Zhang Y, Burock MA. Diffusion tensor imaging in parkinson's disease and parkinsonian syndrome: a systematic review. Front Neurol, 2020, 11: 531993. DOI: 10.3389/fneur.2020.531993
3
Mazal AT, Ashikyan O, Cheng J, et al. Diffusion-weighted imaging and diffusion tensor imaging as adjuncts to conventional MRI for the diagnosis and management of peripheral nerve sheath tumors: current perspectives and future directions. Eur Radiol, 2019, 29(8): 4123-4132. DOI: 10.1007/s00330-018-5838-8
4
刘莹, 王红, 马景旭. 磁共振扩散张量成像及扩散峰度成像在帕金森病诊断中的价值. 医学影像学杂志, 2020, 30(03): 358-362. DOI: XYXZ.0.2020-03-005
Liu Y, Wang H, Ma JX. MR the value of diffusion tensor diffusion kurtosis imaging in the diagnosis of Parkinson's disease. J Med Imaging, 2020, 30 (3): 358-362. DOI: XYXZ.0.2020-03-005
5
Knossalla F, Kohl Z, Winkler J, et al. High-resolution diffusion tensor-imaging indicates asymmetric microstructural disorganization within substantia nigra in early Parkinson's disease. J Clin Neurosci, 2018, 50: 199-202. DOI: 10.1016/j.jocn.2018.01.023
6
Deng X, Wang L, Yang T, et al. A meta-analysis of diffusion tensor imaging of substantia nigra in patients with Parkinson's disease. Sci Rep, 2018, 8(1):2941. DOI: 10.1038/s41598-018-20076-y
7
Lenfeldt N, Larsson A, Nyberg L, et al. Fractional anisotropy in the substantia nigra in Parkinson's disease: a complex picture. Eur J Neurol, 2015, 22(10): 1408-1414. DOI: 10.1111/ene.12760
8
Pelizzari L, Lagana MM, Di Tella S, et al. Combined assessment of diffusion parameters and cerebral blood flow within basal ganglia in early Parkinson's disease. Front Aging Neurosci, 2019, 11: 134. DOI: 10.3389/fnagi.2019.00134
9
Joshi N, Rolheiser TM, Fisk JD, et al. Lateralized microstructural changes in early-stage Parkinson's disease in anterior olfactory structures, but not in substantia nigra. J Neurol, 2017, 264(7): 1497-1505. DOI: 10.1007/s00415-017-8555-3
10
Zhang H, Schneider T, Wheeler-Kingshott CA, et al. NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage, 2012, 61(4): 1000-1016. DOI: 10.1016/j.neuroimage.2012.03.072
11
Yasuno F, Makinodan M, Takahashi M, et al. Microstructural anomalies evaluated by neurite orientation dispersion and density imaging are related to deficits in facial emotional recognition via perceptual-binding difficulties in autism spectrum disorder. Autism Res, 2020, 13(5): 729-740. DOI: 10.1002/aur.2280
12
Crombe A, Planche V, Raffard G, et al. Deciphering the microstructure of hippocampal subfields with in vivo DTI and NODDI: applications to experimental multiple sclerosis. Neuroimage, 2018, 172: 357-368. DOI: 10.1016/j.neuroimage.2018.01.061
13
Wang Z, Zhang S, Liu C, et al. A study of neurite orientation dispersion and density imaging in ischemic stroke. Magn Reson Imaging, 2019, 57: 28-33. DOI: 10.1016/j.mri.2018.10.018
14
Wichmann T, Dostrovsky JO. Pathological basal ganglia activity in movement disorders. Neuroscience, 2011, 198: 232-244. DOI: 10.1016/j.neuroscience.2011.06.048
15
Bingbing G, Yujing Z, Yanwei M, et al. Diffusion kurtosis imaging of microstructural changes in gray matter nucleus in parkinson disease. Front Neurol, 2020, 11: 252. DOI: 10.3389/fneur.2020.00252
16
Zhang Y, Wu I, Tosun D, et al. Progression of regional microstructural degeneration in Parkinson's disease: a multicenter diffusion tensor imaging study. PloS one, 2016, 11(10): e165540. DOI: 10.1371/journal.pone.0165540.
17
刘伟星, 张晓斌, 陆鹏, 等. 磁共振NODDI对帕金森患者黑质及壳核病变的临床研究. 影像诊断与介入放射学, 2020, 29(2): 83-88. DOI: 10.3969/j.issn.1005-8001.2020.02.001.
Liu WX, Zhang XB, Lu P, et al. MR neurite orientation dispersion and density imaging of substantia nigra and putamen in Parkinson's disease. Imaging Diagn Interv Radiol, 2020, 29(2): 83-88. DOI: 10.3969/J.ISSN.1005-8001.
18
Lanciego JL, Luquin N, Obeso JA. Functional neuroanatomy of the basal ganglia. Cold Spring Harb Perspect Med, 2012, 2(12): a009621. DOI: 10.1101/cshperspect.a009621.
19
Kamagata K, Hatano T, Okuzumi A, et al. Neurite orientation dispersion and density imaging in the substantia nigra in idiopathic Parkinson disease. Eur Radiol, 2016, 26(8): 2567-2577. DOI: 10.1007/s00330-015-4066-8.
20
Kamagata K, Hatano T, Aoki S. What is NODDI and what is its role in Parkinson's assessment? Expert Rev Neurother, 2016, 16(3): 241-243. DOI: 10.1586/14737175.2016.1142876.
21
Weingarten CP, Sundman MH, Hickey P, et al. Neuroimaging of Parkinson's disease: Expanding views. Neurosci Biobehav Rev, 2015, 59: 16-52. DOI: 10.1016/j.neubiorev.2015.09.007.
22
Jellinger KA. The pathomechanisms underlying Parkinson's disease. Expert Rev Neurother, 2014, 14(2): 199-215. DOI: 10.1586/14737175.2014.877842.

上一篇 肝型和脑型肝豆状核变性的临床及MRI分析
下一篇 难治性与非难治性抑郁症的静息态脑功能磁共振ReHo 特征初步比较
  
诚聘英才 | 广告合作 | 免责声明 | 版权声明
联系电话:010-67113815
京ICP备19028836号-2